Hellenica World

Charadriiformes

Cladus: Eukaryota
Supergroup: Opisthokonta
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Deuterostomia
Phylum: Chordata
Subphylum: Vertebrata
Infraphylum: Gnathostomata
Superclassis: Tetrapoda
Classis: Aves
Subclassis: Carinatae
Infraclassis: Neornithes
Parvclassis: Neognathae
Ordo: Charadriiformes
Subordo: Alcae - Charadrii - Lari

Vernacular names
Internationalization
Česky: Dlouhokřídlí
Dansk: Magevadefugle-ordenen(Charadriiformes)
Deutsch: Regenpfeiferartige
Frysk: Wilstereftigen
Hrvatski: Močvarice
日本語: チドリ目
한국어: 도요목
Nederlands: Steltloperachtigen
Polski: Siewkowe
Русский: Ржанкообразные
Slovenščina: Pobrežniki
Suomi: Rantalinnut
Türkçe: Yağmur kuşları
Українська: Сивкоподібні
中文: 鸻形目

Charadriiformes is a diverse order of small to medium-large birds. It includes about 350 species and has members in all parts of the world. Most Charadriiformes live near water and eat invertebrates or other small animals; however, some are pelagic (sea birds), some occupy deserts and a few are found in thick forest. They are very small, most of the time, but can be quite large.

Systematics


.

The order was formerly divided into three suborders:

* The waders (or "Charadrii"): typical shorebirds, most of which feed by probing in the mud or picking items off the surface in both coastal and freshwater environments.
* The gulls and their allies (or "Lari"): these are generally larger species which take fish from the sea. Several gulls and skuas will also take food items from beaches, or rob smaller species, and some have become adapted to inland environments.
* The auks (or "Alcae") are coastal species which nest on sea cliffs and "fly" underwater to catch fish.

The Sibley-Ahlquist taxonomy, which has been widely accepted in America, lumps all the Charadriiformes together with the seabirds and birds of prey into a greatly enlarged order Ciconiiformes. However, the resolution of the DNA-DNA hybridization technique used by Sibley & Ahlquist was not sufficient to properly resolve the relationships in this group, and indeed it appears as if the Charadriiformes consititute a single large and very distinctive lineage of modern birds of their own[1].

The auks, usually considered distinct because of their peculiar morphology, are more likely related to gulls, the "distinctness" being a result of adaptation for diving. Following recent research[2], a better arrangement may be as follows:

Families in taxonomic order

This is a list of the charadriiform families, presented in taxonomic order.

* Suborder Scolopaci: snipe-like waders
o Family Scolopacidae: snipe, sandpipers, phalaropes, and allies
* Suborder Thinocori: aberrant charadriforms
o Family Rostratulidae: painted snipe
o Family Jacanidae: jacanas
o Family Thinocoridae: seedsnipe
o Family Pedionomidae: Plains Wanderer
* Suborder Lari: gulls and allies
o Family Laridae: gulls
o Family Rhynchopidae: skimmers
o Family Sternidae: terns
o Family Alcidae: puffins, guillemots, murres, and allies
o Family Stercorariidae: skuas
o Family Glareolidae: pratincoles and coursers
o Family Dromadidae: Crab Plover
* Suborder Turnici: buttonquails
o Family Turnicidae: buttonquails
* Suborder Chionidi: thick-knees and allies
o Family Burhinidae: thick-knees
o Family Chionididae: sheathbills
o Family Pluvianellidae: Magellanic Plover
* Suborder Charadrii: plover-like waders
o Family Ibidorhynchidae: Ibisbill
o Family Recurvirostridae: avocets and stilts
o Family Haematopodidae: oystercatchers
o Family Charadriidae: plovers and lapwings

More conservatively, the Thinocori could be included in the Scolopaci, and the Chionidi in the Charadrii, or the Glareolidae could be placed in a suborder of their own. The buttonquails are of indeterminate, quite basal position in the Lari-Scolopaci sensu lato group. The arrangement as presented here is a consensus of the recent studies.[3]

Evolution


That the Charadriiformes are an ancient group is also borne out by the fossil record. Much of the Neornithes' fossil record around the Cretaceous–Tertiary extinction event is made up of bits and pieces of birds which resemble this order. In many, this is probably due to convergent evolution brought about by semi-aquatic habits. Specimen VI 9901 (López de Bertodano Formation, Late Cretaceous of Vega Island, Antarctica) is probably a basal charadriiform somewhat reminiscent of a thick-knee[citation needed]. However, more complete remains of undisputed charadriiforms are known only from the mid-Paleogene onwards. Present-day orders emerged around the Eocene-Oligocene boundary, roughly 35-30 mya. Basal or unresolved charadriiforms are:

* "Morsoravis" (Late Paleocene/Early Eocene of Jutland, Denmark) - a nomen nudum?
* Jiliniornis (Huadian Middle Eocene of Huadian, China) - charadriid?
* Boutersemia (Early Oligocene of Boutersem, Belgium) - glareolid?
* Turnipax (Early Oligocene) - turnicid?
* Elorius (Early Miocene Saint-Gérand-le-Puy, France)
* "Larus" desnoyersii (Early Miocene of SE France) - larid? stercorarid?
* "Larus" pristinus (John Day Early Miocene of Willow Creek, USA) - larid?
* Charadriiformes gen. et sp. indet. (Bathans Early/Middle Miocene of Otago, New Zealand) - charadriid? scolopacid?[4]
* Charadriiformes gen. et sp. indet. (Bathans Early/Middle Miocene of Otago, New Zealand) - charadriid? scolopacid?[5]
* Charadriiformes gen. et sp. indet. (Bathans Early/Middle Miocene of Otago, New Zealand) - larid?[6]
* Charadriiformes gen. et sp. indet. (Sajóvölgyi Middle Miocene of Mátraszõlõs, Hungary[7]
* "Totanus" teruelensis (Late Miocene of Los Mansuetos, Spain) - scolopacid? larid?

The "transitional shorebirds" ("Graculavidae") are a generally Mesozoic form taxon formerly believed to constitute the common ancestors of charadriiforms, waterfowl and flamingos. They are now assumed to be mostly basal taxa of the charadriiforms and/or "higher waterbirds", which probably were two distinct lineages 65 mya already[citation needed], and few if any are still believed to be related to the well-distinct weaterfowl. Taxa formerly considered graculavids are:

* Laornithidae - charadriiform? gruiform?
o Laornis (Late Cretaceous?)
* "Graculavidae"
o Graculavus (Lance Creek Late Cretaceous - Hornerstown Late Cretaceous/Early Palaeocene) - charadriiform?
o Palaeotringa (Hornerstown Late Cretaceous?) - charadriiform?
o Telmatornis (Navesink Late Cretaceous?) - charadriiform? gruiform?
o Scaniornis - phoenicopteriform?
o Zhylgaia - presbyornithid?
o Dakotornis
o "Graculavidae" gen. et sp. indet. (Gloucester County, USA)

Other wader- or gull-like birds incertae sedis, which may or may not be Charadriiformes, are:

* Ceramornis (Lance Creek Late Cretaceous)
* "Cimolopteryx" (Lance Creek Late Cretaceous)
* Palintropus (Lance Creek Late Cretaceous)
* Torotix (Late Cretaceous)
* Volgavis (Early Paleocene of Volgograd, Russia)
* Eupterornis (Paleocene of France)
* Neornithes incerta sedis (Late Paleocene/Early Eocene of Ouled Abdoun Basin, Morocco)[8]
* Fluviatitavis (Early Eocene of Silveirinha, Portugal)


Footnotes

1. ^ Fain & Houde (2004)
2. ^ Ericson et al. (2003), Paton et al. (2003, Thomas et al. (2004a,b), van Tuinen et al. (2004), Paton & Baker (2006)
3. ^ van Tuinen et al. (2004), Paton & Baker (2006)
4. ^ Proximal right humerus (MNZ S42416) and proximal left carpometacarpi (MNZ S42415, S42435) of a bird the size of a Red-necked Stint: Worthy et al. (2007)
5. ^ Several wing and thorax bones of a bird the size of a Double-banded Plover: Worthy et al. (2007)
6. ^ Premaxillae (MNZ S42681, S42736) and proximal right scapula (MNZ S41058) of a bird apparently similar to the Black-billed Gull but almost the size of a Kelp Gull: Worthy et al. (2007)
7. ^ Gál et al. (1998-99)
8. ^ A wading bird the size of a White Stork (Ciconia ciconia): Bourdon (2005)


References

* Bourdon, Estelle (2006): L'avifaune du Paléogène des phosphates du Maroc et du Togo: diversité, systématique et apports à la connaissance de la diversification des oiseaux modernes (Neornithes) ["Paleogene avifauna of phosphates of Morocco and Togo: diversity, systematics and contributions to the knowledge of the diversification of the Neornithes"]. Doctoral thesis, Muséum national d'histoire naturelle [in French]. HTML abstract
* Ericson, Per G.P.; Envall, I.; Irestedt, M. & Norman, J.A. (2003): Inter-familial relationships of the shorebirds (Aves: Charadriiformes) based on nuclear DNA sequence data. BMC Evol. Biol. 3: 16. doi:10.1186/1471-2148-3-16 PDF fulltext
* Fain, Matthew G. & Houde, Peter (2004): Parallel radiations in the primary clades of birds. Evolution 58(11): 2558-2573. doi:10.1554/04-235 PDF fulltext
* Gál, Erika; Hír, János; Kessler, Eugén & Kókay, József (1998–99): Középsõ-miocén õsmaradványok, a Mátraszõlõs, Rákóczi-kápolna alatti útbevágásból. I. A Mátraszõlõs 1. lelõhely [Middle Miocene fossils from the sections at the Rákóczi chapel at Mátraszőlős. Locality Mátraszõlõs I.]. Folia Historico Naturalia Musei Matraensis 23: 33-78. [Hungarian with English abstract] PDF fulltext
* Paton, Tara A. & Baker, Allan J. (2006): Sequences from 14 mitochondrial genes provide a well-supported phylogeny of the Charadriiform birds congruent with the nuclear RAG-1 tree. Mol. Phylogenet. Evol. 39(3): 657–667. doi:10.1016/j.ympev.2006.01.011 (HTML abstract)
* Paton, T.A.; Baker, A.J.; Groth, J.G. & Barrowclough, G.F. (2003): RAG-1 sequences resolve phylogenetic relationships within charadriiform birds. Mol. Phylogenet. Evol. 29: 268-278. doi:10.1016/S1055-7903(03)00098-8 (HTML abstract)
* Thomas, Gavin H.; Wills, Matthew A. & Székely, Tamás (2004a): Phylogeny of shorebirds, gulls, and alcids (Aves: Charadrii) from the cytochrome-b gene: parsimony, Bayesian inference, minimum evolution, and quartet puzzling. Mol. Phylogenet. Evol. 30(3): 516-526. doi:10.1016/S1055-7903(03)00222-7 (HTML abstract)
* Thomas, Gavin H.; Wills, Matthew A. & Székely, Tamás (2004): A supertree approach to shorebird phylogeny. BMC Evol. Biol. 4: 28. doi:10.1186/1471-2148-4-28 PDF fulltext Supplementary Material
* van Tuinen, Marcel; Waterhouse, David & Dyke, Gareth J. (2004): Avian molecular systematics on the rebound: a fresh look at modern shorebird phylogenetic relationships. J. Avian Biol. 35(3): 191-194. doi:10.1111/j.0908-8857.2004.03362.x PDF fulltext
* Worthy, Trevor H.; Tennyson, A.J.D.; Jones, C.; McNamara, J.A. & Douglas, B.J. (2007): Miocene waterfowl and other birds from central Otago, New Zealand. J. Syst. Palaeontol. 5(1): 1-39. doi:10.1017/S1477201906001957 (HTML abstract)

Biology Encyclopedia

Birds Images

Source: Wikipedia, Wikispecies: All text is available under the terms of the GNU Free Documentation License

Index

Scientific Library - Scientificlib.com