ART

Cladus: Eukaryota
Supergroup: Opisthokonta
Regnum: Fungi
Divisio: Ascomycota
Subdivisia: Pezizomycotina - Saccharomycotina - Taphrinomycotina


References

* Lumbsch, H.T. and Huhndorf, S.M. (ed.) 2007. Outline of Ascomycota – 2007. Myconet 13: 1 - 58. (Outline of Ascomycota - 2007)

* EOL: Lichens (Podcast)

Vernacular names
Česky: Houby vřeckovýtrusné
Deutsch: Schlauchpilze
Eesti: Kottseened
Ελληνικά: Ασκομύκητες
Español: Ascomicetos
한국어: 자낭균문
Íslenska: Asksveppir
Lietuvių: Aukšliagrybiai
Magyar: Tömlősgombák
Македонски: Торбести габи
Nederlands: Zakjeszwammen
日本語: 子嚢菌門
‪Norsk (bokmål)‬: Sekksporesopp
Polski: Workowce
Português: Ascomicetos
Svenska: Sporsäcksvampar
Українська: Аскоміцети
Walon: Ascomicete

The Ascomycota are a Division/Phylum of the kingdom Fungi, and subkingdom Dikarya. Its members are commonly known as the Sac fungi. They are the largest phylum of Fungi, with over 64,000 species.[2] The defining feature of this fungal group is the "ascus" (from Greek: ἀσκός (askos), meaning "sac" or "wineskin"), a microscopic sexual structure in which nonmotile spores, called ascospores, are formed. However, some species of the Ascomycota are asexual, meaning that they do not have a sexual cycle and thus do not form asci or ascospores. Previously placed in the Deuteromycota along with asexual species from other fungal taxa, asexual (or anamorphic) ascomycetes are now identified and classified based on morphological or physiological similarities to ascus-bearing taxa, and by phylogenetic analyses of DNA sequences.[3][4]

The ascomycetes are a monophyletic group, i.e., all of its members trace back to one common ancestor. This group is of particular relevance to humans as sources for medicinally important compounds, such as antibiotics and for making bread, alcoholic beverages, and cheese, but also as pathogens of humans and plants. Familiar examples of sac fungi include morels, truffles, brewer's yeast and baker's yeast, Dead Man's Fingers, and cup fungi. The fungal symbionts in the majority of lichens (loosely termed "ascolichens") such as Cladonia belong to the Ascomycota. There are many plant-pathogenic ascomycetes, including apple scab, rice blast, the ergot fungi, black knot, and the powdery mildews. Several species of ascomycetes are biological model organisms in laboratory research. Most famously Neurospora crassa, several species of yeasts, and Aspergillus species are used in many genetics and cell biology studies. Penicillium species on cheeses and those producing antibiotics for treating bacterial infectious diseases are examples of taxa that belong to the Ascomycota.

Ascomycetes versus Ascomycota

Before the recognition of the fungal kingdom, the sac fungi were considered to be a Class, not a Phylum. The original collective term for these taxa was "Ascomycetes", which was first coined in the 1800s for a rankless nonlichenized taxon that possessed asci. The names Ascomycota, Ascomycetes, and others with the same root are based upon the term "ascus". "Ascomycetes" was soon used to include lichenized taxa, and became the standard term, at the class level, for all ascus-bearing species, just as the term "Basidiomycetes" became used for their basidium-bearing counterparts. Elevation of the taxonomic rank of the Ascomycetes resulted in the names Ascomycetae, Ascomycotina, and finally Ascomycota. Together, the Ascomycota and the Basidiomycota form the subkingdom Dikarya. The more familiar term, Ascomycetes, is still loosely used, e.g. at fungal forays it is often said of a fungus, such as Peziza, "It is an ascomycete, not a basidiomycete" in reference to their sexual reproductive mode. The terms are further abbreviated to "ascos" and "basidos" which are not officially sanctioned technical names.

Modern classification of Ascomycota

There are three subphyla that are described and accepted:

* The Pezizomycotina is the largest subphylum and contains all ascomycetes that produce ascocarps (fruiting bodies), except for one genus, Neolecta, in the Taphrinomycotina. It is roughly equivalent to the previous taxon, Euascomycetes. The Pezizomycotina includes most macroscopic "ascos" such as truffles, ergot, ascolichens, cup fungi (discomycetes), pyrenomycetes, lorchels, and caterpillar fungus.[1] It also contains microscopic fungi such as powdery mildews, dermatophytic fungi, and Laboulbeniales.
* The Saccharomycotina comprises most of the "true" yeasts, such as baker's yeast and Candida which are single-celled (unicellular) fungi, which reproduce vegetatively by budding. Most of these species were previously classified in a taxon called Hemiascomycetes.
* The Taphrinomycotina includes a disparate and basal group within the Ascomycota that was recognized following molecular (DNA) analyses. The taxon was originally named Archiascomycetes (or Archaeascomycetes). It includes both hyphal fungi (Neolecta, Taphrina), fission yeasts (Schizosaccharomyces), and the mammalian lung parasite, Pneumocystis.

Ribosomal RNA gene sequencing of soil suggests that there may be a fourth subphylum of Ascomycota (termed Soil Clone Group I or SCGI), that has not been described in cultures or based on fruiting bodies. SCGI organisms are only known from DNA sequences found in soils worldwide and are placed between the Taphriomycotina and the Saccharomycotina.[5][6]

Outdated taxon names

Several outdated taxon names—based on morphological features—are still occasionally used for species of the Ascomycota. These include the following sexual (teleomorphic) groups, defined by the structures of their sexual fruiting bodies: the Discomycetes, which included all species forming apothecia; the Pyrenomycetes, which included all sac fungi that formed perithecia or pseudothecia, or any structure resembling these morphological structures; and the Plectomycetes, which included those species that form cleistothecia. Hemiascomycetes included the yeasts and yeast-like fungi that have now been placed into the Saccharomycotina or Taphrinomycotina, while the Euascomycetes included the remaining species of the Ascomycota which are now in the Pezizomycotina, and the Neolecta which are in the Taphrinomycotina.

Some ascomycetes do not reproduce sexually or are not known to produce asci and are therefore anamorphic species. Those anamorphs that produce conidia (mitospores) were previously described as Mitosporic Ascomycota. Some taxonomists placed this group into a separate artificial phylum, the Deuteromycota (or "Fungi Imperfecti"). Where recent molecular analyses have identified close relationships with ascus-bearing taxa, anamorphic species have been grouped into the Ascomycota, despite the absence of the defining ascus. Sexual and asexual isolates of the same species commonly carry different binomial species names, as, for example, Aspergillus nidulans and Emericella nidulans, for asexual and sexual isolates, respectively, of the same species.

Species of the Deuteromycota were classified as Coelomycetes if they produced their conidia in minute flask- or saucer-shaped conidiomata, known technically as pycnidia and acervuli.[7] The Hyphomycetes were those species where the conidiophores (i.e., the hyphal structures that carry conidia-forming cells at the end) are free or loosely organized. They are mostly isolated but sometimes also appear as bundles of cells aligned in parallel (described as synnematal) or as cushion-shaped masses (described as sporodochial).[8]

Morphology

Most species grow as filamentous, microscopic structures called hyphae. Many interconnected hyphae form a mycelium, which—when visible to the naked eye (macroscopic)—is commonly called mold (or, in botanical terminology, thallus). During sexual reproduction, many Ascomycota typically produce large numbers of asci. The asci is often contained in a multicellular, occasionally readily visible fruiting structure, the ascocarp (also called an ascoma). Ascocarps come in a very large variety of shapes: cup-shaped, club-shaped, potato-like, spongy, seed-like, oozing and pimple-like, coral-like, nit-like, golf-ball-shaped, perforated tennis ball-like, cushion-shaped, plated and feathered in miniature (Laboulbeniales), microscopic classic Greek shield-shaped, stalked or sessile. They can appear solitary or clustered. Their texture can likewise be very variable, including fleshy, like charcoal (carbonaceous), leathery, rubbery, gelatinous, slimy, powdery, or cob-web-like. Ascocarps come in multiple colors such as red, orange, yellow, brown, black, or, more rarely, green or blue. Some ascomyceous fungi, such as Saccharomyces cerevisiae, grow as single-celled yeasts, which—during sexual reproduction—develop into an ascus, and do not form fruiting bodies.
The "candlesnuff fungus", Xylaria hypoxylon

In lichenized species, the thallus of the fungus defines the shape of the symbiotic colony. Some dimorphic species, such as Candida albicans, can switch between growth as single cells and as filamentous, multicellular hyphae. Other species are pleomorphic, exhibiting asexual (anamorphic) as well as a sexual (teleomorphic) growth forms.

Except for lichens, the non-reproductive (vegetative) mycelium of most ascomycetes is usually inconspicuous because it is commonly embedded in the substrate, such as soil, or grows on or inside a living host, and only the ascoma may be seen when fruiting. Pigmentation, such as melanin in hyphal walls, along with prolific growth on surfaces can result in visible mold colonies; examples include Cladosporium species, which form black spots on bathroom caulking and other moist areas. Many ascomycetes cause food spoilage, and, therefore, the pellicles or moldy layers that develop on jams, juices, and other foods are the mycelia of these species or occasionally Mucoromycotina and almost never Basidiomycota. Sooty molds that develop on plants, especially in the tropics are the thalli of many species.[clarification needed]
The ascocarp of a morel contains numerous apothecia.

Large masses of yeast cells, asci or ascus-like cells, or conidia can also form macroscopic structures. For example. Pneumocystis species can colonize lung cavities (visible in x-rays), causing a form of pneumonia.[9] Asci of Ascosphaera fill honey bee larvae and pupae causing mummification with a chalk-like appearance, hence the name "chalkbrood".[10] Yeasts for small colonies in vitro and in vivo, and excessive growth ofCandida species in the mouth or vagina causes "thrush", a form of candidiasis.

The cell walls of the ascomycetes almost always contain chitin and β-glucans, and divisions within the hyphae, called "septa", are the internal boundaries of individual cells (or compartments). The cell wall and septa give stability and rigidity to the hyphae and may prevent loss of cytoplasm in case of local damage to cell wall and cell membrane. The septa commonly have a small opening in the center, which functions as a cytoplasmic connection between adjacent cells, also sometimes allowing cell-to-cell movement of nuclei within a hypha. Vegetative hyphae of most ascomycetes contain only one nucleus per cell (uninucleate hyphae), but multinucleate cells—especially in the apical regions of growing hyphae—can also be present.

Metabolism

In common with other fungal phyla, the Ascomycota are heterotrophic organisms that require organic molecules as energy sources. These are obtained by feeding on a variety of organic substrates including dead matter, foodstuffs, or as symbionts in or on other living organisms. To obtain these nutrients from their surroundings, ascomycetous fungi secrete powerful digestive enzymes which break down organic substances into smaller molecules, which are then taken up into the cell. Many species live on dead plant material such as leaves, twigs, or logs. Several species colonize plants, animals, or other fungi as parasites or mutualistic symbionts and derive all their metabolic energy in form of nutrients from the tissues of their hosts.

Owing to their long evolutionary history, the Ascomycota have evolved the capacity to break down almost every organic substance. Unlike most organisms, they are able to use their own enzymes to digest plant biopolymers such as cellulose or lignin. Collagen, an abundant structural protein in animals, and keratin—a protein that forms hair and nails—, can also serve as food sources. Unusual examples include Aureobasidium pullulans, which feeds on wall paint, and the kerosene fungus Amorphotheca resinae, which feeds on aircraft fuel (causing occasional problems for the airline industry), and may sometimes block fuel pipes. Other species can resist high osmotic stress and grow, for example, on salted fish, and a few ascomycetes are aquatic.

The Ascomycota is characterized by a high degree of specialization; for instance, certain species of Laboulbeniales attack only one particular leg of one particular insect species. Many Ascomycota engage in symbiotic relationships such as in lichens—symbiotic associations with green algae or cyanobacteria—in which the fungal symbiont directly obtains products of photosynthesis. In common with many basidiomycetes and Glomeromycota, some ascomycetes form symbioses with plants by colonizing the roots to form mycorrhizal associations. The Ascomycota also represents several carnivorous fungi, which have developed hyphal traps to capture small protists such as amoebae, as well as roundworms (Nematoda), rotifers, tardigrades, and small arthropods such as springtails (Collembola).
Hypomyces completus on culture medium

Distribution and living environment

The Ascomycota are represented in all land ecosystems worldwide, occurring on all continents including Antarctica.[11] Spores and hyphal fragments are dispersed through the atmosphere and freshwater environments, as well as ocean beaches and tidal zones. The distribution of species is variable; while some are found on all continents, others, as for example the white truffle Tuber magnatum, only occur in isolated locations in Italy and Eastern Europe.[12] The distribution of plant-parasitic species is often restricted by host distributions; for example, Cyttaria is only found on Nothofagus (Southern Beech) in the Southern Hemisphere.

Reproduction

Asexual reproduction

Asexual reproduction is the dominant form of propagation in the Ascomycota, and is responsible for the rapid spread of these fungi into new areas. It occurs through vegetative reproductive spores, the conidia. The conidiospores commonly contain one nucleus and are products of mitotic cell divisions and thus are sometimes call mitospores, which are genetically identical to the mycelium from which they originate. They are typically formed at the ends of specialized hyphae, the conidiophores. Depending on the species they may be dispersed by wind or water, or by animals.

Asexual spores

Different types of asexual spores can be identified by colour, shape, and how they are released as individual spores. Spore types can be used as taxonomic characters in the classification within the Ascomycota. The most frequent types are the single-celled spores, which are designated amerospores. If the spore is divided into two by a cross-wall (septum), it is called a didymospore.
Conidiospores of Trichoderma aggressivum, Diameter approx. 3µm
Conidiophores of molds of the genus Aspergillus, conidiogenesis is blastic-phialidic
Conidiophores of Trichoderma harzianum, conidiogenesis is blastic-phialidic
Conidiophores of Trichoderma fertile with vase-shaped phialides and newly formed conidia on their ends (bright points)

When there are two or more cross-walls, the classification depends on spore shape. If the septa are transversal, like the rungs of a ladder, it is a phragmospore, and if they possess a net-like structure it is a dictyospore. In staurospores ray-like arms radiate from a central body; in others (helicospores) the entire spore is wound up in a spiral like a spring. Very long worm-like spores with a length-to-diameter ratio of more than 15:1, are called scolecospores.

Conidiogenesis and dehiscence

Important characteristics of the anamorphs of the Ascomycota are conidiogenesis, which includes spore formation and dehiscence (separation from the parent structure). Conidiogenesis corresponds to Embryology in animals and plants and can be divided into two fundamental forms of development: blastic conidiogenesis, where the spore is already evident before it separates from the conidiogenic hypha, and thallic conidiogenesis, during which a cross-wall forms and the newly created cell develops into a spore. The spores may or may not be generated in a large-scale specialized structure which helps to spread them.

These two basic types can be further classified as follows:

* blastic-acropetal (repeated budding at the tip of the conidiogenic hypha, so that a chain of spores is formed with the youngest spores at the tip),
* blastic-synchronous (simultaneous spore formation from a central cell, sometimes with secondary acropetal chains forming from the initial spores),
* blastic-sympodial (repeated sideways spore formation from behind the leading spore, so that the oldest spore is at the main tip),
* blastic-annellidic (each spore separates and leaves a ring-shaped scar which is inside the scar left by the previous spore),
* blastic-phialidic (the spores arise and are ejected from the open ends of special conidiogenic cells called phialides which remain constant in length),
* basauxic (where a chain of conidia, in successively younger stages of development, is emitted from the mother cell),
* blastic-retrogressive (spores separate by formation of crosswalls near the tip of the conidiogenic hypha, which thus becomes progressively shorter),
* thallic-arthric (double cell walls split the conidiogenic hypha into cells which develop into short, cylindrical spores called arthroconidia; sometimes every second cell dies off, leaving the arthroconidia free),
* thallic-solitary (a large bulging cell separates from the conidiogenic hypha, forms internal walls, and develops to a phragmospore).

Sometimes the conidia are produced in structures visible to the naked eye, which help to distribute the spores. These structures are called "conidiomata" (singular: conidioma), and may take the form of pycnidia (which are flask-shaped and arise in the fungal tissue) or acervuli (which are cushion-shaped and arise in host tissue).[13]

Dehiscence happens in two ways. In schizolytic dehiscence, a double-dividing wall with a central lamella (layer) forms between the cells; the central layer then breaks down thereby releasing the spores. Inrhexolytic dehiscence, the cell wall which joins the spores on the outside degenerates and releases the conidia.

Heterokaryosis and parasexuality

Several Ascomycota species are not known to have a sexual cycle. Such asexual species may be able to undergo genetic recombination between individuals by processes involving heterokaryosis and parasexual events.

Parasexuality refers to the process of heterokaryosis, caused by merging of two hyphae belonging to different individuals, by a process called anastomosis, followed by a series of events resulting in genetically different cell nuclei in the mycelium.[14] The merging of nuclei is not followed by meiotic events, such as gamete formation and results in an increased number of chromosomes per nuclei. Mitotic crossover may enable recombination, i.e., an exchange of genetic material between homologous chromosomes. The chromosome number may then be restored to its haploid state by nuclear division, with each daughter nuclei being genetically different from the original parent nuclei.[15] Alternatively, nuclei may lose some chromosomes, resulting in aneuploid cells.

Sexual reproduction
Ascus of Hypocrea virens with eight two-celled Ascospores

Sexual reproduction in the Ascomycota leads to the formation of the ascus, the structure that defines this fungal group and distinguishes it from other fungal phyla. The ascus is a tube-shaped vessel, a meiosporangium, which contains the sexual spores produced by meiosis and which are called ascospores.

Apart from a few exceptions, such as Candida albicans, most ascomycetes are haploid, i.e., they contain one set of chromosomes per nuclei. During sexual reproduction there is a diploid phase which commonly is very short, and meiosis restores the haploid state.

Formation of sexual spores

The sexual part of the life cycle commences when two hyphal structures mate. In the case of homothallic species, mating is enabled between hyphae of the same fungal clone, whereas in heterothallic species, the two hyphae must originate from fungal clones that differ genetically, i.e., those that are of a different mating type. Mating types are typical of the fungi and correspond roughly to the sexes in plants and animals; however one species may have more than two mating types, resulting in sometimes complex vegetative incompatibility systems.

Gametangia are sexual structures formed from hyphae, and are the generative cells. A very fine hypha, called trichogyne emerges from one gametangium, the ascogonium, and merges with a gametangium (the antheridium) of the other fungal isolate. The nuclei in the antheridium then migrate into the ascogonium, and plasmogamy—the mixing of the cytoplasm—occurs. Unlike in animals and plants, plasmogamy is not immediately followed by the merging of the nuclei (called karyogamy). Instead, the nuclei from the two hyphae form pairs, initiating the dikaryophase of the sexual cycle, during which time the pairs of nuclei synchronously divide. Fusion of the paired nuclei leads to mixing of the genetic material and recombination and is followed by meiosis. A similar sexual cycle is present in the red algae (Rhodophyta).
Unitunicate-inoperculate Asci of Hypomyces chrysospermus

From the fertilized ascogonium, dinucleate hyphae emerge in which each cell contains two nuclei. These hyphae are called ascogenous or fertile hyphae. They are supported by the vegetative mycelium containing uni– (or mono–) nucleate hyphae, which are sterile. The mycelium containing both sterile and fertile hyphae may grows into fruiting body, the ascocarp, which may contain millions of fertile hyphae.

The sexual structures are formed in the fruiting layer of the ascocarp, the hymenium. At one end of ascogenous hyphae, characteristic U-shaped hooks develop, which curve back opposite to the growth direction of the hyphae. The two nuclei contained in the apical part of each hypha divide in such a way that the threads of their mitotic spindles run parallel, creating two pairs of genetically different nuclei. One daughter nucleus migrates close to the hook, while the other daughter nucleus locates to the basal part of the hypha. The formation of two parallel cross-walls then divides the hypha into three sections: one at the hook with one nucleus, one at the basal of the original hypha that contains one nucleus, and one that separates the U-shaped part which contains the other two nuclei.
Cross-section of a cup-shaped structure showing locations of developing meiotic asci (upper edge of cup, left side, arrows pointing to two gray-colored cells containing four and two small circles), sterile hyphae (upper edge of cup, right side, arrows pointing to white-colored cells with a single small circle in them), and mature asci (upper edge of cup, pointing to two gray-colored cells with eight small circles in them)
Diagram of an apothecium (the typical cup-like reproductive structure of Ascomycetes) showing sterile tissues as well as developing and mature asci.

Fusion of the nuclei (karyogamy) takes place in the U-shaped cells in the hymenium, and results in the formation of a diploid zygote. The zygote grows into the ascus, an elongated tube-shaped or cylinder-shaped capsule. Meiosis then gives rise to four haploid nuclei, usually followed by a further mitotic division that results in eight nuclei in each ascus. The nuclei along with some cytoplasma become enclosed within membranes and a cell wall to give rise to ascospores that are aligned inside the ascus like peas in a pod.

Upon opening of the ascus, ascospores may be dispersed by the wind, while in some cases the spores are forcibly ejected form the ascus; certain species have evolved spore cannons, which can eject ascospores up to 30 cm. away. When the spores reach a suitable substrate, they germinate, form new hyphae, which restarts the fungal life cycle.

The form of the ascus is important for classification and is divided into four basic types: unitunicate-operculate, unitunicate-inoperculate, bitunicate, or prototunicate. See the article on asci for further details.
[edit] Ecology

The Ascomycota fulfil a central role in most land-based ecosystems. They are important decomposers which break down organic materials, such as dead leaves and animals, and help the detritivores (animals which feed on decomposing material) to obtain their nutrients. Ascomycetes along with other fungi can break down large molecules such as cellulose or lignin, and thus have important roles in nutrient cycling such as the carbon cycle.

The fruiting bodies of the Ascomycota provide food for many animals ranging from insects and slugs and snails (Gastropoda) to rodents and larger mammals such as deer and wild boars.

Many ascomycetes also form symbiotic relationships with other organisms, including plants and animals.

Lichens
Main article: Lichen

Probably since early in their evolutionary history, the Ascomycota have formed symbiotic associations with green algae (Chlorophyta), and other types of algae and cyanobacteria. These mutualistic associations are commonly known as lichens, and can grow and persist in terrestrial regions of the earth that are inhospitable to other organisms and characterized by extremes in temperature and humidity, including the Arctic, the Antarctic, deserts, and mountaintops. While the photoautotrophic algal partner generates metabolic energy through photosynthesis, the fungus offers a stable, supportive matrix and protects cells from radiation and dehydration. Around 42% of the Ascomycota (about 18,000 species) form lichens, and almost all the fungal partners of lichens belong to the Ascomycota.

Mycorrhizal fungi and endophytes

Members of the Ascomycota form two important types of relationship with plants: as mycorrhizal fungi and as endophytes. Mycorrhiza are symbiotic associations of fungi with the root systems of the plants, which can be of vital importance for growth and persistence for the plant. The fine mycelial network of the fungus enables the increased uptake of mineral salts that occur at low levels in the soil. In return, the plant provides the fungus with metabolic energy in the form of photosynthetic products.

Endophytic fungi live inside plants, and those that form mutualistic or commensal associations with their host, do not damage their hosts. The exact nature of the relationship between endophytic fungus and host depends on the species involved, and in some cases fungal colonization of plants can bestow a higher resistance against insects, roundworms (nematodes), and bacteria; in the case of grass endophytes the fungal symbiont produces poisonous alkaloids, which can affect the health of plant-eating (herbivorous) mammals and deter or kill insect herbivores.[16]

Symbiotic relationships with animals

Several ascomycetes of the genus Xylaria colonize the nests of leafcutter ants and other fungus-growing ants of the tribe Attini, and the fungal gardens of termites (Isoptera). Since they do not generate fruiting bodies until the insects have left the nests, it is suspected that, as confirmed in several cases of Basidiomycota species, they may be cultivated.[clarification needed]

Bark beetles (family Scolytidae) are important symbiotic partners of ascomycetes. The female beetles transport fungal spores to new hosts in characteristic tucks in their skin, the mycetangia. The beetle tunnels into the wood and into large chambers in which they lay their eggs. Spores released from the mycetangia germinate into hyphae, which can break down the wood. The beetle larvae then feed on the fungal mycelium, and, on reaching maturity, carry new spores with them to renew the cycle of infection. A well-known example of this is Dutch elm disease, caused by Ophiostoma ulmi, which is carried by the European elm bark beetle, Scolytus multistriatus.

Importance for humans
Tree attacked by the Bluestain fungus, Ophiostoma minus

Ascomycetes make many contributions to the good of humanity, and also have many ill effects.
Harmful interactions

One of their most harmful roles is as the agent of many plant diseases. For instance:

* Dutch Elm Disease, caused by the closely related species Ophiostoma ulmi and Ophiostoma novo-ulmi, has led to the death of many elms in Europe and North America.

Claviceps purpurea on rye (Secale cereale)

* The originally Asian Cryphonectria parasitica is responsible for attacking Sweet Chestnuts (Castanea sativa), and virtually eliminated the once-widespread American Chestnut (Castanea dentata),
* A disease of Maize (Zea mays), which is especially prevalent in North America, is brought about by Cochliobolus heterostrophus.
* Taphrina deformans causes leaf curl of peach.
* Uncinula necator is responsible for the disease Powdery mildew, which attacks grapevines.
* Species of Monilia cause brown rot of stone fruit such as peaches (Prunus persica) and sour cherries (Prunus ceranus).
* Members of the Ascomycota such as Stachybotrys chartarum are responsible for fading of woollen textiles, which is a common problem especially in the tropics.
* Blue-green, red and brown moulds attack and spoil foodstuffs - for instance Penicillium italicum rots oranges.
* Cereals infected with Fusarium graminearum contain mycotoxins like deoxynivalenol (DON), which can lead to skin and mucous membrane lesions when eaten by pigs.
* Ergot (Claviceps purpurea) is a direct menace to humans when it attacks wheat or rye and produces highly poisonous and carcinogenic alkaloids, causing ergotism if consumed. Symptoms include hallucinations, stomach cramp, and a burning sensation in the limbs ("Saint Anthony's Fire").
* Aspergillus flavus, which grows on peanuts and other hosts, generates aflatoxin, which damages the liver and is highly carcinogenic.
* Candida albicans, a yeast which attacks the mucous membranes, can cause an infection of the mouth or vagina called thrush or candidiasis, and is also blamed for "yeast allergies".
* Fungi like Epidermophyton cause skin infections but are not very dangerous for people with healthy immune systems. However if the immune system is damaged they can be life-threatening; for instance, Pneumocystis jiroveci is responsible for severe lung infections which occur in AIDS patients.

Positive effects

On the other hand, ascus fungi have brought some important benefits to humanity.

* The most famous case may be that of the mould Penicillium chrysogenum (formerly Penicillium notatum), which, probably to attack competing bacteria, produces an antibiotic which, under the name of Penicillin, triggered a revolution in the treatment of bacterial infectious diseases in the 20th century.
* The medical importance of Tolypocladium niveum as an immunosuppressor can hardly be exaggerated. It excretes Ciclosporin, which, as well as being given during organ transplants to prevent rejection, is also prescribed for auto-immune diseases such as multiple sclerosis, although there is some doubt over the long-term side-effects of the treatment.

Stilton cheese veined with Penicillium roqueforti

* Some ascomycete fungi can be altered relatively easily through genetic engineering procedures. They can then produce useful proteins such as insulin, human growth hormone, or TPa, which is employed to dissolve blood clots.
* Several species are common model organisms in biology, including Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Neurospora crassa. The genomes of a number of ascomycete fungi have been fully sequenced.
* Baker's Yeast (Saccharomyces cerevisiae) is used to make bread, beer and wine, during which process sugars such as glucose or sucrose are fermented to make ethanol and carbon dioxide. Bakers use the fungus for the carbon dioxide production, causing the bread to rise, with the ethanol boiling off during cooking. Most vintners use it for the ethanol production, with the carbon dioxide being released into the atmosphere during fermentation. Brewers and traditional producers of sparkling wine use both, with a primary fermentation for the alcohol and a secondary one to produce the carbon dioxide bubbles that provide the drinks with "sparkling" texture in the case of wine and the desirable foam in the case of beer.
* Enzymes of Penicillium camemberti play a role in the manufacture of the cheeses Camembert and Brie, while those of Penicillium roqueforti do the same for Gorgonzola, Roquefort and Stilton.
* In Asia Aspergillus oryzae is added to a pulp of soaked soya beans to make soy sauce.
* Finally, some members of the Ascomycota are eaten with relish; morelss (Morchella) and truffles (Tuber) are some of the most sought-after fungus delicacies.

Notes

1. ^ Cavalier-Smith T. (1998). "A revised six-kingdom system of Life". Biological Reviews of the Cambridge Philosophical Society 73 (3): 203–66. doi:10.1111/j.1469-185X.1998.tb00030.x. PMID 9809012. http://journals.cambridge.org/action/displayIssue?jid=BRE&volumeId=73&issueId=03#.
2. ^ Kirk et al., p. 55.
3. ^ Lutzoni F, et al. (2004). "Assembling the fungal tree of life: progress, classification, and evolution of subcellular traits". American Journal of Botany 91: 1446–80. doi:10.3732/ajb.91.10.1446.
4. ^ James TY, et al. (2006). "Reconstructing the early evolution of Fungi using a six-gene phylogeny". Nature 443 (7113): 818–22. doi:10.1038/nature05110. PMID 17051209.
5. ^ Schadt CW, Martin AP, Lipson DA, Schmidt SK. (2003). "Seasonal dynamics of previously unknown fungal lineages in tundra soils.". Science 301 (5638): 1359–61. doi:10.1126/science.1086940. PMID 12958355.
6. ^ Porter TM, Schadt CW, Rizvi L, Martin AP, Schmidt SK, Scott-Denton L, Vilgalys R, Moncalvo JM. (2008). "Widespread occurrence and phylogenetic placement of a soil clone group adds a prominent new branch to the fungal tree of life.". Molecular Phylogenetics and Evolution 46 (2): 635–44. doi:10.1016/j.ympev.2007.10.002. PMID 18032071.
7. ^ Alexopoulos et al., p. 233.
8. ^ Alexopoulos et al'., pp. 218–22.
9. ^ Krajicek BJ, Thomas CF Jr, Limper AH., BJ; Thomas Jr, CF; Limper, AH (2009). "Pneumocystis pneumonia: current concepts in pathogenesis, diagnosis, and treatment". Clinics in Chest Medicine 30 (2): 265–89. doi:10.1016/j.ccm.2009.02.005. PMID 19375633.
10. ^ James RR, Skinner JS., RR; Skinner, JS (2005). "PCR diagnostic methods for Ascosphaera infections in bees". Journal of Invertebrate Pathology 90 (2): 98–103. doi:10.1016/j.jip.2005.08.004. PMID 16214164.
11. ^ Laybourn-Parry J., J (2009). "Microbiology. No place too cold.". Science 324 (5934): 1521–22. doi:10.1126/science.1173645. PMID 19541982.
12. ^ Mello A, Murat, Bonfante P., A; Murat, C; Bonfante, P (2006). "Truffles: much more than a prized and local fungal delicacy". FEMS Microbiology Letters 260 (1): 1–8. doi:10.1111/j.1574-6968.2006.00252.x. PMID 16790011. http://www3.interscience.wiley.com/cgi-bin/fulltext/118603426/HTMLSTART. Retrieved 2009-08-31.
13. ^ See the Conidium article for full details.
14. ^ Deacon, pp. 164–66
15. ^ Deacon, pp. 167–68.
16. ^ Schulz B, Boyle C., B; Boyle, C (2005). "The endophytic continuum". Mycological Research 109 (6): 661–86. doi:10.1017/S095375620500273X. PMID 16080390.

Cited texts

* Alexopoulos CJ, Mims CW, Blackwell M. (1996). Introductory Mycology. John Wiley and Sons. ISBN 0471522295.
* Deacon J. (2005). Fungal Biology. Cambridge, MA: Blackwell Publishers. ISBN 1-4051-3066-0.
* Jennings DH, Lysek G. (1996). Fungal Biology: Understanding the Fungal Lifestyle. Guildford, UK: Bios Scientific Publishers Ltd. ISBN 978-1859961506.
* Kirk PM, Cannon PF, Minter DW, Stalpers JA. (2008). Dictionary of the Fungi. 10th ed. Wallingford: CABI. ISBN 0-85199-826-7.
* Taylor EL, Taylor TN. (1993). The Biology and Evolution of Fossil Plants. Englewood Cliffs, N.J: Prentice Hall. ISBN 0-13-651589-4.

Fungi Images

Biology Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World