- Art Gallery -


Gerhard Karl Erich Gentzen (November 24, 1909, Greifswald, Germany – August 4, 1945, Prague, Czechoslovakia) was a German mathematician and logician. He had his major contributions in the foundations of mathematics, proof theory, especially on natural deduction and sequent calculus. He died in 1945 after the Second World War, because he was deprived of food after being arrested in Prague.

Life and career

Gentzen was a student of Paul Bernays at the University of Göttingen. Bernays was fired as "non-Aryan" in April 1933 and therefore Hermann Weyl formally acted as his supervisor. At great risk to his career Gentzen kept in contact with Bernays until the beginning of the Second World War. In November 1933, he joined the Sturmabteilung to pass the state exam for teachers.[citation needed] In 1935, he corresponded with Abraham Fraenkel from Jerusalem and was implicated by the Nazi teachers' union as one who "keeps contacts to the Chosen People." In 1935 and 1936, Hermann Weyl, head of the Göttingen mathematics department in 1933 until his resignation under Nazi pressure, made strong efforts to bring him to the Institute for Advanced Study in Princeton.

Between November 1935 and 1939 he was an assistant of David Hilbert in Göttingen. To be able to take part in a congress in Paris in 1937, he had to join the NSDAP.[citation needed] One of Gentzen's papers had a second publication in the ill-famed Deutsche Mathematik that was founded by Ludwig Bieberbach who promoted "Aryan" mathematics.[1]

From 1943 he was a teacher at the University of Prague.[2] After the war he starved to death in Prague, after being arrested like all other Germans in Prague on May 7, 1945 and deprived of food.[3]

Gentzen's main work was on the foundations of mathematics, in proof theory, specifically natural deduction and the sequent calculus. His cut-elimination theorem is the cornerstone of proof-theoretic semantics, and some philosophical remarks in his "Investigations into Logical Deduction", together with Ludwig Wittgenstein's aphorism that "meaning is use", constitute the starting point for inferential role semantics.

Gentzen proved the consistency of the Peano axioms in a paper published in 1936. In his Habilitationsschrift, finished in 1939, he determined the proof-theoretical strength of Peano arithmetic. This was done by a direct proof of the unprovability of the principle of transfinite induction, used in his 1936 proof of consistency, within Peano arithmetic. The principle can, however, be expressed in arithmetic, so that a direct proof of Gödel's incompleteness theorem followed. Gödel used an artificial coding procedure to construct an unprovable formula of arithmetic. Gentzen's proof was published in 1943 and marked the beginning of ordinal proof theory.

"Über die Existenz unabhängiger Axiomensysteme zu unendlichen Satzsystemen". Mathematische Annalen 107 (2): 329–350. 1932.
"Untersuchungen über das logische Schließen. I". Mathematische Zeitschrift 39 (2): 176–210. 1934.
"Untersuchungen über das logische Schließen. II". Mathematische Zeitschrift 39 (3): 405–431. 1935.
Gentzen, Gerhard (1936). "Die Widerspruchsfreiheit der Stufenlogik". Mathematische Zeitschrift 41: 357–366. doi:10.1007/BF01180425.
Gentzen, Gerhard (1936). "Die Widerspruchsfreiheit der reinen Zahlentheorie". Mathematische Annalen 112: 493–565. doi:10.1007/BF01565428.
"Der Unendlichkeitsbegriff in der Mathematik. Vortrag, gehalten in Münster am 27. Juni 1936 am Institut von Heinrich Scholz". Semester-Berichte Münster: 65–80. 1936–1937. (Lecture hold in Münster at the institute of Heinrich Scholz on 27 June 1936)
"Unendlichkeitsbegriff und Widerspruchsfreiheit der Mathematik". Actualités scientifiques et industrielles 535: 201–205. 1937.
"Die gegenwartige Lage in der mathematischen Grundlagenforschung". Deutsche Mathematik 3: 255–268. 1938.
"Neue Fassung des Widerspruchsfreiheitsbeweises für die reine Zahlentheorie". Forschungen zur Logik und zur Grundlegung der exakten Wissenschaften 4: 19–44. 1938.
Gentzen, Gerhard (1943). "Beweisbarkeit und Unbeweisbarkeit von Anfangsfällen der transfiniten Induktion in der reinen Zahlentheorie". Mathematische Annalen 119: 140–161. doi:10.1007/BF01564760.


"Zusammenfassung von mehreren vollständigen Induktionen zu einer einzigen". Archiv für mathematische Logik und Grundlagenforschung 2 (1): 81–93. 1954.
Gentzen, Gerhard (1974). "Der erste Widerspruchsfreiheitsbeweis für die klassische Zahlentheorie". Archiv für mathematische Logik und Grundlagenforschung 16 (3–4): 97–118. doi:10.1007/BF02015370. – Published by Paul Bernays.
Gentzen, Gerhard (1974). "Über das Verhältnis zwischen intuitionistischer und klassischer Arithmetik". Archiv für mathematische Logik und Grundlagenforschung 16 (3–4): 119–132. doi:10.1007/BF02015371. – Published by Paul Bernays.

See also

Bertrand Russell


^ Dipl.Math. Walter Tydecks, Neuere Geschichte der Mathematik in Deutschland (in German)
^ Gerhard Gentzen at math.muni.cz
^ Menzler-Trott, p. 273 ff.


Eckart Menzler-Trott: Gentzens Problem: Mathematische Logik im nationalsozialistischen Deutschland. Birkhäuser Verlag 2001, ISBN 3-7643-6574-9
Edward Griffor and Craig Smorynski (trans.): Logic's Lost Genius: The Life of Gerhard Gentzen (History of Mathematics, vol. 33). American Mathematical Society 2007, ISBN 978-0-8218-3550-0 (an English translation)
M. E. Szabo: Collected Papers of Gerhard Gentzen. North-Holland 1969

External links

O'Connor, John J.; Robertson, Edmund F., "Gerhard Gentzen", MacTutor History of Mathematics archive, University of St Andrews.
Gerhard Gentzen at the Mathematics Genealogy Project

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License