Analytic combinatorics is a branch of combinatorics that describes combinatorial classes using generating functions, which are often analytic functions, but sometimes formal power series.

Two types of generating functions are commonly used — ordinary and exponential generating functions.

An important technique for deriving generating functions is symbolic combinatorics.

Given a generating function, analytic combinatorics attempts to describe the asymptotic behavior of a counting sequence using algebraic techniques. This often involves analysis of the function's singularities.

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License