Hellenica World

.


In[1]:=

"AugmentedDodecahedron_2.gif"

Out[1]=

"AugmentedDodecahedron_3.gif"

In[2]:=

"AugmentedDodecahedron_4.gif"

Out[2]=

"AugmentedDodecahedron_5.gif"

In[3]:=

"AugmentedDodecahedron_6.gif"

Out[3]=

"AugmentedDodecahedron_7.gif"

In[4]:=

"AugmentedDodecahedron_8.gif"

Out[4]=

"AugmentedDodecahedron_9.gif"

In[5]:=

"AugmentedDodecahedron_10.gif"

Out[5]=

"AugmentedDodecahedron_11.gif"

In[6]:=

"AugmentedDodecahedron_12.gif"

Out[6]=

"AugmentedDodecahedron_13.gif"

In[7]:=

"AugmentedDodecahedron_14.gif"

Out[7]=

"AugmentedDodecahedron_15.gif"

In[8]:=

"AugmentedDodecahedron_16.gif"

Out[8]=

"AugmentedDodecahedron_17.gif"

In[9]:=

"AugmentedDodecahedron_18.gif"

Out[9]//InputForm=

Graphics3D[GraphicsComplex[{{-Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 0, -Sqrt[(23 - 3*Sqrt[5])/6]/44 +
     Root[9 - 36*#1^2 + 16*#1^4 & , 4, 0]}, {-Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 0,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[9 - 36*#1^2 + 16*#1^4 & , 1, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 3, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-3 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 3, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (3 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-1 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (1 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[25 - 180*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-1 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[25 - 180*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (1 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 216*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], -1/2,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 216*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 1/2,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 216*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], -1/2,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[1 - 216*#1^2 + 144*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 1/2,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[1 - 9*#1^2 + 9*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 0,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-1 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (1 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[1 - 9*#1^2 + 9*#1^4 & , 4, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 0,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[25 - 180*#1^2 + 144*#1^4 & , 4, 0]},
   {Root[25 - 180*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-1 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[25 - 180*#1^2 + 144*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (1 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[121 - 345*#1^2 + 225*#1^4 & , 1, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], 0,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[121 - 6180*#1^2 + 3600*#1^4 & , 4, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 2, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (-3 - Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]},
   {Root[1 - 36*#1^2 + 144*#1^4 & , 2, 0] - Root[1 - 1236*#1^2 + 17424*#1^4 & , 2, 0], (3 + Sqrt[5])/4,
    -Sqrt[(23 - 3*Sqrt[5])/6]/44 + Root[1 - 36*#1^2 + 144*#1^4 & , 1, 0]}},
  Polygon[{{2, 6, 12, 11, 5}, {5, 11, 7, 3, 20}, {11, 12, 8, 16, 7}, {12, 6, 21, 4, 8}, {6, 2, 13, 18, 21},
    {2, 5, 20, 17, 13}, {4, 21, 18, 10, 15}, {18, 13, 17, 9, 10}, {17, 20, 3, 14, 9}, {3, 7, 16, 1, 14}, {16, 8, 4, 15, 1},
    {19, 15, 10}, {19, 10, 9}, {19, 9, 14}, {19, 14, 1}, {19, 1, 15}}]]]

In[10]:=

"AugmentedDodecahedron_19.gif"

Out[10]=

"AugmentedDodecahedron_20.gif"

In[11]:=

"AugmentedDodecahedron_21.gif"

Out[11]=

"AugmentedDodecahedron_22.gif"

In[12]:=

"AugmentedDodecahedron_23.gif"

Out[12]=

"AugmentedDodecahedron_24.gif"

Johnson Polyhedra

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home