Hellenica World

.


In[62]:=

"AugmentedTridiminishedIcosahedron_2.gif"

Out[62]=

"AugmentedTridiminishedIcosahedron_3.gif"

In[63]:=

"AugmentedTridiminishedIcosahedron_4.gif"

Out[63]=

"AugmentedTridiminishedIcosahedron_5.gif"

In[64]:=

"AugmentedTridiminishedIcosahedron_6.gif"

Out[64]=

"AugmentedTridiminishedIcosahedron_7.gif"

In[65]:=

"AugmentedTridiminishedIcosahedron_8.gif"

Out[65]=

"AugmentedTridiminishedIcosahedron_9.gif"

In[66]:=

"AugmentedTridiminishedIcosahedron_10.gif"

Out[66]=

"AugmentedTridiminishedIcosahedron_11.gif"

In[67]:=

"AugmentedTridiminishedIcosahedron_12.gif"

Out[67]=

"AugmentedTridiminishedIcosahedron_13.gif"

In[68]:=

"AugmentedTridiminishedIcosahedron_14.gif"

Out[68]=

"AugmentedTridiminishedIcosahedron_15.gif"

In[69]:=

"AugmentedTridiminishedIcosahedron_16.gif"

Out[69]=

"AugmentedTridiminishedIcosahedron_17.gif"

In[70]:=

"AugmentedTridiminishedIcosahedron_18.gif"

Out[70]//InputForm=

Graphics3D[GraphicsComplex[{{0, 0, Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[9 - 2472*#1^2 + 8752*#1^4 - 8832*#1^6 + 2304*#1^8 & , 1, 0]},
   {-(1/Sqrt[3]), 0, Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 1, 0]}, {-1/(2*Sqrt[3]), -1/2,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 4, 0]}, {-1/(2*Sqrt[3]), 1/2,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 4, 0]}, {1/(2*Sqrt[3]), -1/2,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 1, 0]}, {1/(2*Sqrt[3]), 1/2,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 1, 0]}, {1/Sqrt[3], 0,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 84*#1^2 + 144*#1^4 & , 4, 0]}, {Root[1 - 9*#1^2 + 9*#1^4 & , 1, 0], 0,
    Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 36*#1^2 + 144*#1^4 & , 3, 0]}, {Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0],
    (-1 - Sqrt[5])/4, Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 36*#1^2 + 144*#1^4 & , 3, 0]}, {Root[1 - 36*#1^2 + 144*#1^4 & , 4, 0],
    (1 + Sqrt[5])/4, Sqrt[(903 + 350*Sqrt[2] - 223*Sqrt[5] - 282*Sqrt[10])/6]/84 +
     Root[1 - 36*#1^2 + 144*#1^4 & , 3, 0]}},
  Polygon[{{8, 3, 4}, {4, 3, 7}, {4, 7, 10}, {3, 9, 7}, {3, 8, 2, 5, 9}, {6, 2, 8, 4, 10},
    {10, 7, 9, 5, 6}, {1, 2, 6}, {1, 6, 5}, {1, 5, 2}}]]]

In[71]:=

"AugmentedTridiminishedIcosahedron_19.gif"

Out[71]=

"AugmentedTridiminishedIcosahedron_20.gif"

In[72]:=

"AugmentedTridiminishedIcosahedron_21.gif"

Out[72]=

"AugmentedTridiminishedIcosahedron_22.gif"

In[73]:=

"AugmentedTridiminishedIcosahedron_23.gif"

Out[73]=

"AugmentedTridiminishedIcosahedron_24.gif"

Johnson Polyhedra

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home