Hellenica World

.


Barbier's theorem, a basic result on curves of constant width first proved by Joseph Emile Barbier, states that the perimeter of any curve of constant width w is πw.

The most familiar examples of curves of constant width are the circle and the Reuleaux triangle. A circle of width (diameter) w has perimeter πw. A Reuleaux triangle of width w consists of three arcs of circles of radius w. Each of these arcs has central angle π/3, so the perimeter of the Reuleaux triangle of width w is equal to ½ the perimeter of a circle of radius w and therefore is equal to πw. A similar analysis of other simple examples such as Reuleaux polygons gives the same answer.

The analogue of Barbier's theorem for surfaces of constant width is false.

External links

* The Theorem of Barbier (Java) at cut-the-knot

Geometry

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home