Hellenica World

# Gyroelongated pentagonal pyramid

In[578]:=

Out[578]=

In[579]:=

Out[579]=

In[580]:=

Out[580]=

In[581]:=

Out[581]=

In[582]:=

Out[582]=

In[583]:=

Out[583]=

In[584]:=

Out[584]=

In[585]:=

Out[585]=

In[586]:=

Out[586]//InputForm=

Graphics3D[GraphicsComplex[{{0, 0, Sqrt[5/8 + Sqrt[5]/8] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{-Sqrt[1/2 + 1/(2*Sqrt[5])], 0, -Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{Sqrt[1/2 + 1/(2*Sqrt[5])], 0, Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{-Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, -Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{-Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, -Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{Sqrt[(5 - Sqrt[5])/10]/2, (-1 - Sqrt[5])/4, Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{Sqrt[(5 - Sqrt[5])/10]/2, (1 + Sqrt[5])/4, Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{-Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{-Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{Sqrt[1/4 + 1/(2*Sqrt[5])], -1/2, -Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44},
{Sqrt[1/4 + 1/(2*Sqrt[5])], 1/2, -Sqrt[1/8 + 1/(8*Sqrt[5])] - Sqrt[(85 + 31*Sqrt[5])/10]/44}},
Polygon[{{10, 4, 2, 5, 11}, {11, 7, 3}, {5, 9, 7}, {2, 8, 9}, {4, 6, 8}, {10, 3, 6}, {11, 5, 7}, {5, 2, 9},
{2, 4, 8}, {4, 10, 6}, {10, 11, 3}, {7, 9, 1}, {9, 8, 1}, {8, 6, 1}, {6, 3, 1}, {3, 7, 1}}]]]

In[587]:=

Out[587]=

In[588]:=

Out[588]=

In[589]:=

Out[589]=

Johnson Polyhedra

Geometry