Hellenica World

.

In mathematics, the continuous dual Hahn polynomials are a family of orthogonal polynomials in the Askey scheme of hypergeometric orthogonal polynomials. They are defined in terms of generalized hypergeometric functions by

Continuous Dual Hahn polynomials

\( S_n(x^2;a,b,c)= {}_3F_2(-n,a+ix,a-ix;a+b,a+c;1).\ \)

Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.

Closely related polynomials include the dual Hahn polynomials \( R_n(x;γ,δ,N) \), the continuous Hahn polynomials \( p_n(x,a,b, \overline{a}, \overline{b}) \), and the Hahn polynomials. These polynomials all have q-analogs with an extra parameter q, such as the q-Hahn polynomials \( Q_n (x;α,β, N;q) \), and so on.


Relation to other polynomials

Wilson polynomials are a generalization of continuous dual Hahn polynomials

References

Hahn, Wolfgang (1949), "Über Orthogonalpolynome, die q-Differenzengleichungen genügen", Mathematische Nachrichten 2: 4–34, doi:10.1002/mana.19490020103, ISSN 0025-584X, MR 0030647
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), "Hahn Class: Definitions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home