- Art Gallery -


In mathematics, especially in real algebraic geometry, a semialgebraic space is a space which is locally isomorphic to a semialgebraic set.

Let U be an open subset of Rn for some n. A semialgebraic function on U is defined to be a continuous real-valued function on U whose restriction to any semialgebraic set contained in U has a graph which is a semialgebraic subset of the product space Rn×R. This endows Rn with a sheaf \( \mathcal{O}_{\mathbf{R}^n}\) of semialgebraic functions.

(For example, any polynomial mapping between semialgebraic sets is a semialgebraic function, as is the maximum of two semialgebraic functions.)

A semialgebraic space is a locally ringed space \( (X, \mathcal{O}_X) \) which is locally isomorphic to Rn with its sheaf of semialgebraic functions.
See also

Semialgebraic set
Real algebraic geometry
Real closed ring

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World