# .

# Wall-crossing

In algebraic geometry and string theory, the phenomenon of wall-crossing describes the discontinuous change of a certain quantity, such as an integer geometric invariant, an index or a space of BPS state, across a codimension-one wall in a space of stability conditions, a so-called wall of marginal stability.

References

Kontsevich, M. and Soibelman, Y. "Stability structures, motivic Donaldsonâ€“Thomas invariants and cluster transformations" (2008). arXiv:0811.2435.

M. Kontsevich, Y. Soibelman, "Motivic Donaldsonâ€“Thomas invariants: summary of results", arXiv:0910.4315

Joyce, D. and Song, Y. "A theory of generalized Donaldsonâ€“Thomas invariants," (2008). arXiv:0810.5645.

Gaiotto, D. and Moore, G. and Neitzke, A. "Four-dimensional wall-crossing via three-dimensional field theory" (2008). arXiv:/0807.4723.

Mina Aganagic, Hirosi Ooguri, Cumrun Vafa, Masahito Yamazaki, "Wall crossing and M-theory", arXiv:0908.1194

Undergraduate Texts in Mathematics

Graduate Studies in Mathematics

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License