Algebraic number theory

Algebraic number theory is a branch of number theory in which the concept of a number is expanded to the algebraic numbers which are roots of polynomials with rational coefficients. An algebraic number field is any finite (and therefore algebraic) field extension of the rational numbers. These domains contain elements analogous to the integers, the so-called algebraic integers. In this setting, the familiar features of the integers (e.g. unique factorization) need not hold. The virtue of the machinery employed — Galois theory, group cohomology, class field theory, group representations and L-functions — is that it allows one to recover that order partly for this new class of numbers.

Algebraic number theory, Introductory , Şaban Alaca, Kenneth S. Williams

Algebraic number theory, Problems in , Maruti Ram Murty, Jody Esmonde

Classical theory of algebraic numbers, Paulo Ribenboim

See also

* List of algebraic number theory topics

* Algebraic number fields

Number Theory

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License


Scientific Library -