William Rowan Hamilton

Sir William Rowan Hamilton PRIA FRSE (4 August 1805 – 2 September 1865) was an Irish physicist, astronomer, and mathematician, who made important contributions to classical mechanics, optics, and algebra. His studies of mechanical and optical systems led him to discover new mathematical concepts and techniques. His best known contribution to mathematical physics is the reformulation of Newtonian mechanics, now called Hamiltonian mechanics. This work has proven central to the modern study of classical field theories such as electromagnetism, and to the development of quantum mechanics. In pure mathematics, he is best known as the inventor of quaternions.

Hamilton is said to have shown immense talent at a very early age. Astronomer Bishop Dr. John Brinkley remarked of the 18-year-old Hamilton, 'This young man, I do not say will be, but is, the first mathematician of his age.'

Life

William Rowan Hamilton's scientific career included the study of geometrical optics, classical mechanics, adaptation of dynamic methods in optical systems, applying quaternion and vector methods to problems in mechanics and in geometry, development of theories of conjugate algebraic couple functions (in which complex numbers are constructed as ordered pairs of real numbers), solvability of polynomial equations and general quintic polynomial solvable by radicals, the analysis on Fluctuating Functions (and the ideas from Fourier analysis), linear operators on quaternions and proving a result for linear operators on the space of quaternions (which is a special case of the general theorem which today is known as the Cayley–Hamilton theorem). Hamilton also invented "icosian calculus", which he used to investigate closed edge paths on a dodecahedron that visit each vertex exactly once.

Early life

Hamilton was the fourth of nine children born to Sarah Hutton (1780–1817) and Archibald Hamilton (1778–1819), who lived in Dublin at 38 Dominick Street. Hamilton's father, who was from Dunboyne, worked as a solicitor. By the age of three, Hamilton had been sent to live with his uncle James Hamilton, a graduate of Trinity College who ran a school in Talbots Castle in Trim, Co. Meath.[2]

His uncle soon discovered that Hamilton had a remarkable ability to learn languages, and from a young age, had displayed an uncanny ability to acquire them (although this is disputed by some historians, who claim he had only a very basic understanding of them). At the age of seven he had already made very considerable progress in Hebrew, and before he was thirteen he had acquired, under the care of his uncle (a linguist), almost as many languages as he had years of age. These included the classical and modern European languages, and Persian, Arabic, Hindustani, Sanskrit, and even Marathi and Malay. He retained much of his knowledge of languages to the end of his life, often reading Persian and Arabic in his spare time, although he had long since stopped studying languages, and used them just for relaxation.

In September 1813 the American calculating prodigy Zerah Colburn was being exhibited in Dublin. Colburn was 9, a year older than Hamilton. The two were pitted against each other in a mental arithmetic contest with Colburn emerging the clear victor. In reaction to his defeat, Hamilton dedicated less time to studying languages and more time to studying mathematics.[3][4][5]

Hamilton was part of a small but well-regarded school of mathematicians associated with Trinity College Dublin, which he entered at age 18. He studied both classics and mathematics, and was appointed Professor of Astronomy just prior to his graduation (BA, 1827, he was awarded MA in 1837). He then took up residence at Dunsink Observatory where he spent the rest of his life.[4]

Optics and Mechanics

Classical mechanics

\( {\displaystyle {\vec {F}}=m{\vec {a}}} {\vec {F}}=m{\vec {a}} \)

Second law of motion

Hamilton made important contributions to optics and to classical mechanics. His first discovery was in an early paper that he communicated in 1823 to Dr. Brinkley, who presented it under the title of "Caustics" in 1824 to the Royal Irish Academy. It was referred as usual to a committee. While their report acknowledged its novelty and value, they recommended further development and simplification before publication. Between 1825 and 1828 the paper grew to an immense size, mostly by the additional details that the committee had suggested. But it also became more intelligible, and the features of the new method were now easily seen. Until this period Hamilton himself seems not to have fully understood either the nature or importance of optics, as later he intended to apply his method to dynamics.

In 1827, Hamilton presented a theory of a single function, now known as Hamilton's principal function, that brings together mechanics, optics, and mathematics, and which helped to establish the wave theory of light. He proposed it when he first predicted its existence in the third supplement to his "Systems of Rays," read in 1832. The Royal Irish Academy paper was finally entitled "Theory of Systems of Rays," (23 April 1827) and the first part was printed in 1828 in the Transactions of the Royal Irish Academy. The more important contents of the second and third parts appeared in the three voluminous supplements (to the first part) which were published in the same Transactions, and in the two papers "On a General Method in Dynamics," which appeared in the Philosophical Transactions in 1834 and 1835. In these papers, Hamilton developed his great principle of "Varying Action". The most remarkable result of this work is the prediction that a single ray of light entering a biaxial crystal at a certain angle would emerge as a hollow cone of rays. This discovery is still known by its original name, "conical refraction".

The step from optics to dynamics in the application of the method of "Varying Action" was made in 1827, and communicated to the Royal Society, in whose Philosophical Transactions for 1834 and 1835 there are two papers on the subject, which, like the "Systems of Rays," display a mastery over symbols and a flow of mathematical language almost unequaled. The common thread running through all this work is Hamilton's principle of "Varying Action". Although it is based on the calculus of variations and may be said to belong to the general class of problems included under the principle of least action which had been studied earlier by Pierre Louis Maupertuis, Euler, Joseph Louis Lagrange, and others, Hamilton's analysis revealed much deeper mathematical structure than had been previously understood, in particular the symmetry between momentum and position. Paradoxically, the credit for discovering the quantity now called the Lagrangian and Lagrange's equations belongs to Hamilton. Hamilton's advances enlarged greatly the class of mechanical problems that could be solved, and they represent perhaps the greatest addition which dynamics had received since the work of Isaac Newton and Lagrange. Many scientists, including Liouville, Jacobi, Darboux, Poincaré, Kolmogorov, and Arnold, have extended Hamilton's work, thereby expanding our knowledge of mechanics and differential equations.

While Hamilton's reformulation of classical mechanics is based on the same physical principles as the mechanics of Newton and Lagrange, it provides a powerful new technique for working with the equations of motion. More importantly, both the Lagrangian and Hamiltonian approaches which were initially developed to describe the motion of discrete systems, have proven critical to the study of continuous classical systems in physics, and even quantum mechanical systems. In this way, the techniques find use in electromagnetism, quantum mechanics, quantum relativity theory, and quantum field theory.

Mathematical studies

Hamilton's mathematical studies seem to have been undertaken and carried to their full development without any assistance whatsoever, and the result is that his writings do not belong to any particular "school". Not only was Hamilton an expert as an arithmetic calculator, but he seems to have occasionally had fun in working out the result of some calculation to an enormous number of decimal places. At the age of eight Hamilton engaged Zerah Colburn, the American "calculating boy", who was then being exhibited as a curiosity in Dublin. Two years later, aged ten, Hamilton stumbled across a Latin copy of Euclid, which he eagerly devoured; and at twelve he studied Newton's Arithmetica Universalis. This was his introduction to modern analysis. Hamilton soon began to read the Principia, and at sixteen Hamilton had mastered a great part of it, as well as some more modern works on analytical geometry and the differential calculus.

Around this time Hamilton was also preparing to enter Trinity College, Dublin, and therefore had to devote some time to classics. In mid-1822 he began a systematic study of Laplace's Mécanique Céleste.

From that time Hamilton appears to have devoted himself almost wholly to mathematics, though he always kept himself well acquainted with the progress of science both in Britain and abroad. Hamilton found an important defect in one of Laplace's demonstrations, and he was induced by a friend to write out his remarks, so that they could be shown to Dr. John Brinkley, then the first Royal Astronomer of Ireland, and an accomplished mathematician. Brinkley seems to have immediately perceived Hamilton's talents, and to have encouraged him in the kindest way.

Hamilton's career at College was perhaps unexampled. Amongst a number of extraordinary competitors, he was first in every subject and at every examination. He achieved the rare distinction of obtaining an optime both for Greek and for physics. Hamilton might have attained many more such honours (he was expected to win both the gold medals at the degree examination), if his career as a student had not been cut short by an unprecedented event. This was Hamilton's appointment to the Andrews Professorship of Astronomy in the University of Dublin, vacated by Dr. Brinkley in 1827. The chair was not exactly offered to him, as has been sometimes asserted, but the electors, having met and talked over the subject, authorised Hamilton's personal friend (also an elector) to urge Hamilton to become a candidate, a step which Hamilton's modesty had prevented him from taking. Thus, when barely 22, Hamilton was established at the Dunsink Observatory, near Dublin.

Hamilton was not especially suited for the post, because although he had a profound acquaintance with theoretical astronomy, he had paid little attention to the regular work of the practical astronomer. Hamilton's time was better employed in original investigations than it would have been spent in observations made even with the best of instruments. Hamilton was intended by the university authorities who elected him to the professorship of astronomy to spend his time as he best could for the advancement of science, without being tied down to any particular branch. If Hamilton had devoted himself to practical astronomy, the University of Dublin would assuredly have furnished him with instruments and an adequate staff of assistants.

He was twice awarded the Cunningham Medal of the Royal Irish Academy.[6] The first award, in 1834, was for his work on conical refraction, for which he also received the Royal Medal of the Royal Society the following year.[7] He was to win it again in 1848.

In 1835, being secretary to the meeting of the British Association which was held that year in Dublin, he was knighted by the lord-lieutenant. Other honours rapidly succeeded, among which his election in 1837 to the president's chair in the Royal Irish Academy, and the rare distinction of being made a corresponding member of the Saint Petersburg Academy of Sciences. Later, in 1864, the newly established United States National Academy of Sciences elected its first Foreign Associates, and decided to put Hamilton's name on top of their list.[8]

Quaternions

Quaternion Plaque on Broom Bridge

Main article: History of quaternions

The other great contribution Hamilton made to mathematical science was his discovery of quaternions in 1843. However, in 1840, Benjamin Olinde Rodrigues had already reached a result that amounted to their discovery in all but name.[9]

Hamilton was looking for ways of extending complex numbers (which can be viewed as points on a 2-dimensional plane) to higher spatial dimensions. He failed to find a useful 3-dimensional system (in modern terminology, he failed to find a real, three-dimensional skew-field), but in working with four dimensions he created quaternions. According to Hamilton, on 16 October he was out walking along the Royal Canal in Dublin with his wife when the solution in the form of the equation

i^{2} = j^{2} = k^{2} = ijk = −1

suddenly occurred to him; Hamilton then promptly carved this equation using his penknife into the side of the nearby Broom Bridge (which Hamilton called Brougham Bridge). This event marks the discovery of the quaternion group.

A plaque under the bridge was unveiled by the Taoiseach Éamon de Valera, himself a mathematician and student of quaternions,[10] on 13 November 1958.[11]

Since 1989, the National University of Ireland, Maynooth has organised a pilgrimage, where mathematicians take a walk from Dunsink Observatory to the bridge, where no trace of the carving remains, though a stone plaque does commemorate the discovery.[12]

The quaternion involved abandoning commutativity, a radical step for the time. Not only this, but Hamilton had in a sense invented the cross and dot products of vector algebra. Hamilton also described a quaternion as an ordered four-element multiple of real numbers, and described the first element as the 'scalar' part, and the remaining three as the 'vector' part.

Hamilton introduced, as a method of analysis, both quaternions and biquaternions, the extension to eight dimensions by introduction of complex number coefficients. When his work was assembled in 1853, the book Lectures on Quaternions had "formed the subject of successive courses of lectures, delivered in 1848 and subsequent years, in the Halls of Trinity College, Dublin". Hamilton confidently declared that quaternions would be found to have a powerful influence as an instrument of research. When he died, Hamilton was working on a definitive statement of quaternion science. His son William Edwin Hamilton brought the Elements of Quaternions, a hefty volume of 762 pages, to publication in 1866. As copies ran short, a second edition was prepared by Charles Jasper Joly, when the book was split into two volumes, the first appearing 1899 and the second in 1901. The subject index and footnotes in this second edition improved the Elements accessibility.

One of the features of Hamilton's quaternion system was the differential operator del which could be used to express the gradient of a vector field or to express the curl. These operations were applied by Clerk Maxwell to the electrical and magnetic studies of Michael Faraday in Maxwell's Treatise on Electricity and Magnetism (1873). Though the del operator continues to be used, the real quaternions fall short as a representation of spacetime. On the other hand, the biquaternion algebra, in the hands of Arthur W. Conway and Ludwik Silberstein, provided representational tools for Minkowski space and the Lorentz group early in the twentieth century.

Today, the quaternions are used in computer graphics, control theory, signal processing, and orbital mechanics, mainly for representing rotations/orientations. For example, it is common for spacecraft attitude-control systems to be commanded in terms of quaternions, which are also used to telemeter their current attitude. The rationale is that combining quaternion transformations is more numerically stable than combining many matrix transformations. In control and modelling applications, quaternions do not have a computational singularity (undefined division by zero) that can occur for quarter-turn rotations (90 degrees) that are achievable by many Air, Sea and Space vehicles. In pure mathematics, quaternions show up significantly as one of the four finite-dimensional normed division algebras over the real numbers, with applications throughout algebra and geometry.

Other originality

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (April 2013) (Learn how and when to remove this template message)

Hamilton originally matured his ideas before putting pen to paper. The discoveries, papers, and treatises previously mentioned might well have formed the whole work of a long and laborious life. But not to speak of his enormous collection of books, full to overflowing with new and original matter, which have been handed over to Trinity College, Dublin, the previous mentioned works barely form the greater portion of what Hamilton has published. Hamilton developed the variational principle, which was reformulated later by Carl Gustav Jacob Jacobi. He also introduced the icosian game or Hamilton's puzzle which can be solved using the concept of a Hamiltonian path.

Hamilton's extraordinary investigations connected with the solution of algebraic equations of the fifth degree, and his examination of the results arrived at by N. H. Abel, G. B. Jerrard, and others in their researches on this subject, form another contribution to science. There is next Hamilton's paper on fluctuating functions, a subject which, since the time of Joseph Fourier, has been of immense and ever increasing value in physical applications of mathematics. There is also the extremely ingenious invention of the hodograph. Of his extensive investigations into the solutions (especially by numerical approximation) of certain classes of physical differential equations, only a few items have been published, at intervals, in the Philosophical Magazine.

Besides all this, Hamilton was a voluminous correspondent. Often a single letter of Hamilton's occupied from fifty to a hundred or more closely written pages, all devoted to the minute consideration of every feature of some particular problem; for it was one of the peculiar characteristics of Hamilton's mind never to be satisfied with a general understanding of a question; Hamilton pursued the problem until he knew it in all its details. Hamilton was ever courteous and kind in answering applications for assistance in the study of his works, even when his compliance must have cost him much time. He was excessively precise and hard to please with reference to the final polish of his own works for publication; and it was probably for this reason that he published so little compared with the extent of his investigations.

Death and afterwards

Irish commemorative coin celebrating the 200th Anniversary of his birth.

Hamilton retained his faculties unimpaired to the very last, and steadily continued the task of finishing the Elements of Quaternions which had occupied the last six years of his life. He died on 2 September 1865, following a severe attack of gout precipitated by excessive drinking and overeating.[13] He is buried in Mount Jerome Cemetery in Dublin. He had married Helen Bayly and had several children.

Hamilton is recognised as one of Ireland's leading scientists and, as Ireland becomes more aware of its scientific heritage, he is increasingly celebrated. The Hamilton Institute is an applied mathematics research institute at NUI Maynooth and the Royal Irish Academy holds an annual public Hamilton lecture at which Murray Gell-Mann, Frank Wilczek, Andrew Wiles, and Timothy Gowers have all spoken. The year 2005 was the 200th anniversary of Hamilton's birth and the Irish government designated that the Hamilton Year, celebrating Irish science. Trinity College Dublin marked the year by launching the Hamilton Mathematics Institute.[14]

A 10 Euros commemorative silver Proof coin was issued by the Central Bank of Ireland in 2005 to commemorate 200 years since his birth.

Commemorations of Hamilton

Main article: List of things named after William Rowan Hamilton

Hamilton's equations are a formulation of classical mechanics.

Numerous other concepts and objects in mechanics, such as Hamilton's principle, Hamilton's principal function, and the Hamilton–Jacobi equation, are named after Hamilton.

The Hamiltonian is the name of both a function (classical) and an operator (quantum) in physics, and, in a different sense, a term from graph theory.

The RCSI Hamilton Society was founded in his name in 2004.

The algebra of quaternions is usually denoted by H, or in blackboard bold by H {\displaystyle \mathbb {H} } \mathbb {H} , in honour of Hamilton.

Quotations

"Time is said to have only one dimension, and space to have three dimensions. ... The mathematical quaternion partakes of both these elements; in technical language it may be said to be 'time plus space', or 'space plus time': and in this sense it has, or at least involves a reference to, four dimensions. And how the One of Time, of Space the Three, Might in the Chain of Symbols girdled be."—William Rowan Hamilton (quoted in Robert Percival Graves' "Life of Sir William Rowan Hamilton" (3 volumes, 1882, 1885, 1889))

"He used to carry on, long trains of algebraic and arithmetical calculations in his mind, during which he was unconscious of the earthly necessity of eating; we used to bring in a 'snack' and leave it in his study, but a brief nod of recognition of the intrusion of the chop or cutlet was often the only result, and his thoughts went on soaring upwards." – William Edwin Hamilton (his elder son)

Understanding Hamiltonian mechanics: (1) The math

Quaternions Explained Briefly

Publications

Hamilton, William Rowan (Royal Astronomer of Ireland), "Introductory Lecture on Astronomy". Dublin University Review and Quarterly Magazine Vol. I, Trinity College, January 1833.

Hamilton, William Rowan, "Lectures on Quaternions". Royal Irish Academy, 1853.

Hamilton (1866) Elements of Quaternions University of Dublin Press. Edited by William Edwin Hamilton, son of the deceased author.

Hamilton (1899) Elements of Quaternions volume I, (1901) volume II. Edited by Charles Jasper Joly; published by Longmans, Green & Co..

David R. Wilkins's collection of Hamilton's Mathematical Papers.

See also

Arthur W. Conway

cis (mathematics)

Notes

Graves (1889), Vol. III, p. 32.

Lewis, Albert (2004). "Hamilton, William Rowan (1805–1865)". Oxford Dictionary of National Biography (online ed.). Oxford University Press. doi:10.1093/ref:odnb/12148. (Subscription or UK public library membership required.)

Robert Fountain, Jan van Koningsveld (2013). The Mental Calculator's Handbook. ISBN 978-1-300-84665-9.

O'Connor, John J.; Robertson, Edmund F., "Sir William Rowan Hamilton", MacTutor History of Mathematics archive, University of St Andrews.

Graves, Robert Perceval (1842). "Our portrait gallery – No. XXVI. Sir William R. Hamilton". Dublin University Magazine. 19: 94–110.

"Cunningham Medal Awarded to Professor John V. McCanny, MRIA". Royal Irish Academy. Retrieved 31 October 2014.

"Memorial Address: Sir William Rowan Hamilton". Trinity College Dublin. Retrieved 31 October 2014.

Graves (1889) Vol. III, pp. 204–206.

Simon L. Altmann (1989). "Hamilton, Rodrigues and the quaternion scandal". Mathematics Magazine. 62 (5): 291–308. JSTOR 2689481. doi:10.2307/2689481.

De Valera School of Mathematics and Statistics University of St Andrews, Scotland

Hamilton, William Rowan (1805–1865)

Twenty Years of the Hamilton Walk by Fiacre Ó Cairbre, Department of Mathematics, National University of Ireland, Maynooth (2005), Irish Math. Soc. Bulletin 65 (2010)

Reville, William (26 February 2004). "Ireland's Greatest Mathematician" (PDF). The Irish Times. Retrieved 4 January 2015.

"About HMI". hamilton.tcd.ie. Trinity College, Dublin. Retrieved 1 April 2015.

References

Hankins, Thomas L. (1980). Sir William Rowan Hamilton. The Johns Hopkins University Press. ISBN 978-0-8018-2203-2., 474 pages—Primarily biographical but covers the math and physics Hamilton worked on in sufficient detail to give a flavour of the work.

Graves, Robert Perceval (1882). "Life of Sir William Rowan Hamilton, Volume I". Dublin University Press.

Graves, Robert Perceval (1885). "Life of Sir William Rowan Hamilton, Volume II". II. Dublin University Press.

Graves, Robert Perceval (1889). "Life of Sir William Rowan Hamilton, Volume III". II. Dublin University Press.

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License