- Art Gallery -

Neutral B meson oscillations (or \( B–\overline{B} \) oscillations) is one of the manifestations of the neutral particle oscillation, a fundamental prediction of the Standard Model of particle physics. It is the phenomenon of B mesons changing (or oscillating) between their matter and antimatter forms before their decay. The Bs meson can exist as either a bound state of a strange antiquark and a bottom quark, or a strange quark and bottom antiquark. The oscillations in the neutral B sector are analogous to the phenomena that produces long and short-lived neutral kaons.

\( B_S –\overline{B}_S \) mixing was observed by the CDF experiment at Fermilab in 2006 and by LHCb at CERN in 2011.

Excess of matter over antimatter
Main article: B-factory

The Standard Model predicts that regular matter Bs mesons are slightly favored in these oscillations over their antimatter counterpart, making strange B mesons of especial interest to particle physicists. The observation of the \( B–\overline{B} \) mixing phenomena led physicists to propose the construction of B-factories in the early 1990s. They realized that a precise \( B–\overline{B} \) oscillation measure could pin down the unitarity triangle and perhaps explain the excess of matter over antimatter in the universe. To this end construction began on two B-factories in the late nineties, one at the Stanford Linear Accelerator Center (SLAC) in California and one at KEK in Japan. These B-factories, BaBar and Belle, were set at the ϒ(4S) resonance which is just above the threshold for decay into two B mesons.

On 14 May 2010, physicists at the Fermi National Accelerator Laboratory reported that the oscillations decayed into matter 1% more often than into antimatter, which may help explain the abundance of matter over antimatter in the observed Universe.[1] However, more recent results at LHCb in 2011 and 2012 with larger data samples have demonstrated no significant deviation from the Standard Model prediction of very nearly zero asymmetry.[2][3]
See also

Kaon
Strange B meson
Baryogenesis
CP Violation

References

A New Clue to Explain Existence
"LHCb detector causes trouble for supersymmetry theory". Ars Technica. August 29, 2011.

LHCb collaboration (2014). "Measurement of the flavour-specific CP-violating asymmetry as
sl in B0
s decays". Physics Letters B 728: 607–615. Bibcode:2014PhLB..728..607A. doi:10.1016/j.physletb.2013.12.030.

Paper describing the discovery of B-meson mixing by the ARGUS Collaboration
Fermilab press release from April 2006
September 2006 press release regarding 5 sigma discovery

External links

BaBar Public Homepage
Belle Public Homepage

Physics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World