Superregnum: Eukaryota
Supergroup: Unikonta
Cladus: Opisthokonta
Cladi: Animalia (regnum) - Choanomonada - Fungi (regnum) - Mesomycetozoa


Opisthokonta Cavalier-Smith 1987, emend. Adl et al. 2005

Alternative classifications

Vischer (1945)

Vischer, W. (1945). Über einen pilzähnlichen, autotrophen Mikroorganismus, Chlorochytridion, einige neue Protococcales und die systematische Bedeutung der Chloroplasten. Verhandlungen der Naturforschenden Gesellschaft in Basel 6: 41–49. From Leadbeater (2015), [1].

Opistokontae (Pulselloflagellatae)

Gams (1947)

Gams, H. (1947). Die Protochlorinae als autotrophe Vorfahren von Pilzen und Tieren? Mikroskopie, 2, 383–7, [2]. From Leadbeater (2015) and Copeland (1956).


Rothmaler (1951)

Rothmaler, Werner. (1951). Die Abteilungen und Klassen der Pflanzen. Feddes Rep Spec Nov Reg Veg 3: 256–266, [3], [4].

Copeland (1956)

Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books, [5].

Cavalier-Smith (1987)

Cavalier-Smith, T. (1987). The origin of fungi and pseudofungi. In: Rayner, Alan D. M. (ed.). Evolutionary biology of Fungi. Cambridge: Cambridge Univ. Press. pp. 339–353. From Leadbeater (2015).


Hausmann et al. (2003)

From Hausmann, K., N. Hulsmann, R. Radek. Protistology. Schweizerbart'sche Verlagsbuchshandlung, Stuttgart, 2003.

Empire Eukaryota Chatton, 1925 (= Eukarya)

Adl et al. (2012)

Adl, S.M. et al. (2012). The revised classification of eukaryotes. Journal of Eukaryotic Microbiology 59 (5): 429–514, [6].


[Notes: M, monotypic group with only one described species; P, paraphyletic group; R, ribogroup assembled from phylogenetic studies.]

Karpov et al. (2014)

Karpov, S. A., Mamkaeva, M. A., Aleoshin, V. V., Nassonova, E., Lilje, O., & Gleason, F. H. (2014). Morphology, phylogeny, and ecology of the aphelids (Aphelidea, Opisthokonta) and proposal for the new superphylum Opisthosporidia. Frontiers in Microbiology, 5: 112. doi: 10.3389/fmicb.2014.00112.

Opisthokonta Cavalier-Smith, 1987

Ruggiero et al. (2015)

Ruggiero, M.A., Gordon, D.P., Orrell, T.M., Bailly, N., Bourgoin, T., Brusca, R.C., Cavalier-Smith, T., Guiry, M. D. & Kirk, P. M. (2015). A Higher Level Classification of All Living Organisms. PLoS ONE 10(4): e0119248, [7].

Toruella et al. (2015)

Torruella, Guifré, et al. Phylogenomics reveals convergent evolution of lifestyles in close relatives of animals and fungi. Current Biology 25: 1–7, [8].




Vernacular names

Ελληνικά: Οπισθόκοντα
English: Opisthokont
français: Opisthocontes, opisthocontes
македонски: Заднокамшични
日本語: オピストコンタ
Tiếng Việt: Sinh vật lông roi sau


The opisthokonts (Greek: ὀπίσθιος (opísthios) = "rear, posterior" + κοντός (kontós) = "pole" i.e. "flagellum") or Choanozoa are a broad group of eukaryotes, including both the animal and fungus kingdoms,[5] together with the eukaryotic microorganisms that are sometimes grouped in the paraphyletic phylum Choanozoa (conventionally assigned to the protist "kingdom").[6] The opisthokonts, sometimes referred to as the "Fungi/Metazoa group",[7] are generally recognized as a monophyletic clade, and it is thought to be a sister to the Apusomonadida clade.[6][8][9][10]


A common characteristic of opisthokonts is that flagellate cells, such as the sperm of most animals and the spores of the chytrid fungi, propel themselves with a single posterior flagellum. It is this feature that gives the group its name. In contrast, flagellate cells in other eukaryote groups propel themselves with one or more anterior flagella. However, in some opisthokont groups, including most of the fungi, flagellate cells have been lost.[6]


The close relationship between animals and fungi was suggested by Thomas Cavalier-Smith in 1987,[3] who used the informal name opisthokonta (the formal name has been used for the chytrids by Copeland in 1956), and was supported by later genetic studies.[11]

Early phylogenies placed fungi near the plants and other groups that have mitochondria with flat cristae, but this character varies. More recently, it has been said that holozoa (animals) and holomycota (fungi) are much more closely related to each other than either is to plants, because opisthokonts have a triple fusion of carbamoyl phosphate synthetase, dihydroorotase, and aspartate carbamoyltransferase that is not present in plants, and plants have a fusion of thymidylate synthase and dihydrofolate reductase not present in the opisthokonts. Animals and fungi are also more closely related to amoebas than they are to plants, and plants are more closely related to the SAR supergroup of protists than they are to animals or fungi.[citation needed] Animals and fungi are both heterotrophs, unlike plants, and while fungi are sessile like plants, there are also sessile animals.

Cavalier-Smith and Stechmann[12] argue that the uniciliate eukaryotes such as opisthokonts and Amoebozoa, collectively called unikonts, split off from the other biciliate eukaryotes, called bikonts, shortly after they evolved.


Opisthokonts are divided into Holomycota or Nucletmycea (fungi and all organisms more closely related to fungi than to animals) and Holozoa (animals and all organisms more closely related to animals than to fungi); no opisthokonts basal to the Holomycota/Holozoa split have yet been identified.[citation needed] The Opisthokonts was largely resolved by Torriella et al.[13]. Holomycota and Holozoa are composed of the following groups.

The paraphyletic taxon Choanozoa includes either non-animal holozoans, or non-animal, non-fungi opisthokonts.

The choanoflagellates have a circular mitochondrial DNA genome with long intergenic regions. This is four times as large as animal mitochondrial genomes and contains twice as many protein genes.

Corallochytrium seem likely to be more closely related to the fungi than to the animals on the basis of the presence of ergosterol in their membranes and being capable of synthesis of lysine via the α-aminoadipate (AAA) pathway.

The ichthyosporeans have a two amino acid deletion in their elongation factor 1 α gene that is considered characteristic of fungi.

The ichthyosl genome is >200 kilobase pairs in length and consists of several hundred linear chromosomes that share elaborate terminal-specific sequence patterns.













True Fungi












One view of the great kingdoms and their stem groups.[14]


  • Parfrey, Laura Wegener; Lahr, Daniel J. G.; Knoll, Andrew H.; Katz, Laura A. (August 16, 2011). "Estimating the timing of early eukaryotic diversification with multigene molecular clocks". Proceedings of the National Academy of Sciences of the United States of America. 108 (33): 13624–13629. PMC 3158185 Freely accessible. PMID 21810989. doi:10.1073/pnas.1110633108.
  • Copeland, H. F. (1956). The Classification of Lower Organisms. Palo Alto: Pacific Books.
  • Cavalier-Smith, T. (1987). "The origin of fungi and pseudofungi". In Rayner, Alan D. M. (ed.). Evolutionary biology of Fungi. Cambridge: Cambridge Univ. Press. pp. 339–353. ISBN 0-521-33050-5.
  • Adl, S.M.; et al. (September–October 2005). "The new higher level classification of eukaryotes with emphasis on the taxonomy of protists". Journal of eukaryotic microbiology. 52: 399–451. PMID 16248873. doi:10.1111/j.1550-7408.2005.00053.x.
  • Shalchian-Tabrizi K, Minge MA, Espelund M, et al. (7 May 2008). Aramayo R, ed. "Multigene phylogeny of choanozoa and the origin of animals". PLoS ONE. 3 (5): e2098. Bibcode:2008PLoSO...3.2098S. PMC 2346548 Freely accessible. PMID 18461162. doi:10.1371/journal.pone.0002098.
  • Steenkamp ET, Wright J, Baldauf SL (January 2006). "The protistan origins of animals and fungi". Mol. Biol. Evol. 23 (1): 93–106. PMID 16151185. doi:10.1093/molbev/msj011.
  • "Fungi/Metazoa group". Retrieved 2009-03-08.
  • Huang, Jinling; Xu, Ying; Gogarten, Johann Peter (November 2005). "The presence of a haloarchaeal type tyrosyl-tRNA synthetase marks the opisthokonts as monophyletic". Molecular Biology and Evolution. 22 (11): 2142–2146. PMID 16049196. doi:10.1093/molbev/msi221.
  • Parfrey, Laura Wegener; et al. (December 2006). "Evaluating support for the current classification of eukaryotic diversity". PLOS Genetics. 2 (12): e220. PMC 1713255 Freely accessible. PMID 17194223. doi:10.1371/journal.pgen.0020220.
  • Torruella, Guifré; et al. (February 2012). "Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains". Molecular Biology and Evolution. 29 (2): 531–544. PMC 3350318 Freely accessible. PMID 21771718. doi:10.1093/molbev/msr185.
  • Wainright PO, Hinkle G, Sogin ML, Stickel SK (April 1993). "Monophyletic origins of the metazoa: an evolutionary link with fungi". Science. 260 (5106): 340–2. Bibcode:1993Sci...260..340W. PMID 8469985. doi:10.1126/science.8469985.
  • Stechmann, A.; Cavalier-Smith, T. (5 July 2002). "Rooting the eukaryote tree by using a derived gene fusion". Science. 297 (5578): 89–91. Bibcode:2002Sci...297...89S. PMID 12098695. doi:10.1126/science.1071196.
  • Torruella, Guifré; Mendoza, Alex de; Grau-Bové, Xavier; Antó, Meritxell; Chaplin, Mark A.; Campo, Javier del; Eme, Laura; Pérez-Cordón, Gregorio; Whipps, Christopher M. "Phylogenomics Reveals Convergent Evolution of Lifestyles in Close Relatives of Animals and Fungi". Current Biology. 25 (18): 2404–2410. doi:10.1016/j.cub.2015.07.053.
  • Phylogeny based on:
    • Eichinger, L.; Pachebat, J. A.; Glöckner, G.; Rajandream, M. A.; Sucgang, R.; Berriman, M.; Song, J.; Olsen, R.; et al. (2005). "The genome of the social amoeba Dictyostelium discoideum". Nature. 435 (7038): 43–57. PMC 1352341 Freely accessible. PMID 15875012. doi:10.1038/nature03481.
    • Steenkamp, E. T.; Wright, J.; Baldauf, S. L. (2005). "The Protistan Origins of Animals and Fungi". Molecular Biology and Evolution. 23 (1): 93–106. PMID 16151185. doi:10.1093/molbev/msj011.
  • Biology Encyclopedia

    Retrieved from ""
    All text is available under the terms of the GNU Free Documentation License

    Home - Hellenica World