- Art Gallery -


Cladus: Eukaryota
Regnum: Plantae
Subdivisio: Lycopodiophyta
Classes: Isoetopsida - Lycopodiopsida - †Zosterophyllopsida


Lycopodiophyta Scott 1909, p 617 (orth. emend.)


Basionym: Lycopsida Scott 1909
Isoëtophyta Doweld 2001, p iii
Lepidophyta Bessey 1907, p 320
Lycophyta (orth. error)


Bessey, C. E. (1907) "A synopsis of plant phyla". Nebraska University Studies 7(4): 275-373.
Cantino, Philip D.; Doyle, James A.; Graham, Sean W.; Judd, Walter S.: Olmstead, Richard G.; Soltis, Douglas E.; Soltis, Pamela S.; & Donoghue, Michael J. (2007) "Towards a phylogenetic nomenclature of Tracheophyta". Taxon 56 (3): E1–E44.
Cronquist, A.; Takhtajan, A.; & Zimmermann, W. (1966) "On the higher taxa of Embryobionta." Taxon 15:129-168.
Doweld, A. (2001) Prosyllabus Tracheophytorum-Tentamen Systematis Plantarum Vascularum (Tracheophyta). (Institutum Nationale Carpologiae, Moscow)
Scott, D. H. (1909) Studies in Fossil Botany, 2nd ed. (London: Adam & Charles Black)

Vernacular names
Български: Плауновидни
Česky: Plavuně
Deutsch: Bärlapppflanzen
English: Lycophytes
Français: Lycophyte
Italiano: Licofite
עברית: בעלי קשקשים
Lietuvių: Pataisūnai
Magyar: Korpafüvek
Македонски: Ликоподиумови растенија
Nederlands: Wolfsklauwachtigen
日本語: ヒカゲノカズラ植物門
‪Norsk (bokmål)‬: Kråkefotplanter
Polski: Widłaki
Português: Lycophyta
Русский: Плауновидные
Suomi: Liekomaiset
Svenska: Lummerväxter
Tiếng Việt: Ngành Thạch tùng
Türkçe: Kibrit otları
中文: 石松亚门

The Division Lycopodiophyta (sometimes called Lycophyta or Lycopods) is a tracheophyte subdivision of the Kingdom Plantae. It is the oldest extant (living) vascular plant division at around 410 million years old,[4]:99 and includes some of the most "primitive" extant species. These species reproduce by shedding spores and have macroscopic alternation of generations, although some are homosporous while others are heterosporous. Members of Lycopodiophyta bear a protostele, and the sporophyte generation is dominant.[5] They differ from all other vascular plants in having microphylls, leaves that have only a single vascular trace (vein) rather than the much more complex megaphylls found in ferns and seed plants.


There are around 1,200[6] living (extant) species of Lycopodiophyta which are generally divided into three orders (Lycopodiales, Isoetales, and Selaginellales); in addition there are extinct groups. There is some variation in how the extant orders are grouped into classes: they may be put into a single class; they may be put into two classes, with the Isoetales and Selaginellales combined into one class;[7] or they may be put into three classes, one order in each.[8]:8 The system which uses two classes for extant species is:

Class Lycopodiopsida – clubmosses and firmosses
Class Isoetopsida – quillworts, scale trees, and spikemosses
Class † Zosterophyllopsida – extinct zosterophylls.


The members of this division have a long evolutionary history, and fossils are abundant worldwide, especially in coal deposits. In fact, most known genera are extinct. The Silurian species Baragwanathia longifolia represents the earliest identifable Lycopodiophyta, while some Cooksonia seem to be related.

Fossils ascribed to the Lycopodiophyta first appear in the Silurian period, along with a number of other vascular plants. Phylogenetic analysis places them at the base of the vascular plants; they are distinguished by their microphylls and by transverse dehiscence of their sporangia (as contrasted with longitudinal in other vascular plants). Sporangia of living species are borne on the upper surfaces of microphylls (called sporophylls). In some groups, these sporophylls are clustered into strobili.

During the Carboniferous Period, tree-like Lycopodiophyta (such as Lepidodendron) formed huge forests that dominated the landscape. The complex ecology of these tropical rainforests collapsed during the mid Pennsylvanian due to a change in climate.[9]

Unlike modern trees, leaves grew out of the entire surface of the trunk and branches, but would fall off as the plant grew, leaving only a small cluster of leaves at the top. Their remains formed many fossil coal deposits. In Fossil Park, Glasgow, Scotland, fossilized Lycopodiophyta trees can be found in sandstone. The trees are marked with diamond-shaped scars where they once had leaves.

Club-mosses are homosporous, but spike-mosses and quillworts are heterosporous, with female spores larger than the male, and gametophytes forming entirely within the spore walls.

The spores of Lycopodiophyta are highly flammable and so have been used in fireworks.[10] Currently, huperzine, a chemical isolated from a Chinese clubmoss, is under investigation as a possible treatment for Alzheimer's disease.


^ Kenrick, Paul; Crane, Peter R. (1997). The Origin and Early Diversification of Land Plants: A Cladistic Study. Washington, D. C.: Smithsonian Institution Press. pp. 339–340. ISBN 1-56098-730-8.
^ Cronquist, A.; A. Takhtajan, W. Zimmermann (1966). "On the higher taxa of Embryobionta". Taxon (International Association for Plant Taxonomy (IAPT)) 15 (15): 129–134. doi:10.2307/1217531. JSTOR 1217531.
^ Cantino, Philip D.; James A. Doyle, Sean W. Graham, Walter S. Judd, Richard G. Olmstead, Douglas E. Soltis, Pamela S. Soltis, & Michael J. Donoghue (2007). "Towards a phylogenetic nomenclature of Tracheophyta". Taxon 56 (3): E1–E44.
^ McElwain, Jenny C.; Willis, K. G.; Willis, Kathy; McElwain, J. C. (2002). The evolution of plants. Oxford [Oxfordshire]: Oxford University Press. ISBN 0-19-850065-3.
^ Eichhorn, Evert, and Raven (2005). Biology of Plants, Seventh Edition. 381-388.
^ Callow, R. S.; Cook, Laurence Martin (1999). Genetic and evolutionary diversity: the sport of nature. Cheltenham: S. Thornes. p. 8. ISBN 0-7487-4336-7.
^ Yatsentyuk, S.P.; Valiejo-Roman, K.M.; Samigullin, T.H.; Wilkström, N.; & Troitsky, A.V. (2001). "Evolution of Lycopodiaceae Inferred from Spacer Sequencing of Chloroplast rRNA Genes". Russian Journal of Genetics 37 (9): 1068–73. doi:10.1023/A:1011969716528.
^ "www.ncbi.nlm.nih.gov". Retrieved 2009-03-19.
^ Sahney, S., Benton, M.J. & Falcon-Lang, H.J. (2010). "Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica" (PDF). Geology 38 (12): 1079–1082. doi:10.1130/G31182.1.
^ Cobb, B (1956) A Field Guide to Ferns and their related families: Northeastern and Central North America with a section on species also found in the British Isles and Western Europe (Peterson Field Guides), 215

Plants Images

Biology Encyclopedia

Source: Wikipedia, Wikispecies: All text is available under the terms of the GNU Free Documentation License