Fine Art

In mathematics, the Abel–Plana formula is a summation formula discovered independently by Niels Henrik Abel (1823) and Giovanni Antonio Amedeo Plana (1820). It states that

\( \sum_{n=0}^\infty f(n)= \int_0^\infty f(x) \, dx+ \frac 1 2 f(0)+i \int_0^\infty \frac{f(i t)-f(-i t)}{e^{2\pi t}-1} \, dt. \)

It holds for functions f that are holomorphic in the region Re(z) ≥ 0, and satisfy a suitable growth condition in this region; for example it is enough to assume that |f| is bounded by C/|z|1+ε in this region for some constants C, ε > 0, though the formula also holds under much weaker bounds. (Olver 1997, p.290).

An example is provided by the Hurwitz zeta function,

\( \zeta(s,\alpha)= \sum_{n=0}^\infty \frac{1}{(n+\alpha)^{s}} = \frac{\alpha^{1-s}}{s-1} + \frac 1{2\alpha^s} + 2\int_0^\infty\frac{\sin\left(s \arctan \frac t \alpha\right)}{(\alpha^2+t^2)^\frac s 2}\frac{dt}{e^{2\pi t}-1}. \)

Abel also gave the following variation for alternating sums:

\( \sum_{n=0}^\infty (-1)^nf(n)= \frac {1}{2} f(0)+i \int_0^\infty \frac{f(i t)-f(-i t)}{2\sinh(\pi t)} \, dt. \)

See also

Euler–Maclaurin summation formula


Abel, N.H. (1823), Solution de quelques problèmes à l’aide d’intégrales définies
Butzer, P. L.; Ferreira, P. J. S. G.; Schmeisser, G.; Stens, R. L. (2011), "The summation formulae of Euler-Maclaurin, Abel-Plana, Poisson, and their interconnections with the approximate sampling formula of signal analysis", Results in Mathematics 59 (3): 359–400, doi:10.1007/s00025-010-0083-8, ISSN 1422-6383, MR 2793463
Olver, Frank W. J. (1997) [1974], Asymptotics and special functions, AKP Classics, Wellesley, MA: A K Peters Ltd., ISBN 978-1-56881-069-0, MR 1429619
Plana, G.A.A. (1820), "Sur une nouvelle expression analytique des nombres Bernoulliens, propre à exprimer en termes finis la formule générale pour la sommation des suites", Mem. Accad. Sci. Torino 25: 403–418

External links

Anderson, David, "Abel-Plana Formula", MathWorld.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World