Fine Art

In mathematics, an abelian surface is 2-dimensional abelian variety.

One dimensional complex tori are just elliptic curves and are all algebraic, but Riemann discovered that most complex tori of dimension 2 are not algebraic. The algebraic ones are called abelian surfaces and are exactly the 2-dimensional abelian varieties. Most of their theory is a special case of the theory of higher-dimensional tori or abelian varieties. Criteria to be a product of two elliptic curves (up to isogeny) were a popular study in the nineteenth century.

Invariants: The plurigenera are all 1. The surface is diffeomorphic to S1×S1×S1×S1 so the fundamental group is Z4.

Hodge diamond:

2 2
1 4 1
2 2

Examples: A product of two elliptic curves. The Jacobian variety of a genus 2 curve.

Abelian surfaces with a given number of points


Barth, Wolf P.; Hulek, Klaus; Peters, Chris A.M.; Van de Ven, Antonius (2004), Compact Complex Surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge., 4, Springer-Verlag, Berlin, ISBN 978-3-540-00832-3, MR2030225
Beauville, Arnaud (1996), Complex algebraic surfaces, London Mathematical Society Student Texts, 34 (2nd ed.), Cambridge University Press, ISBN 978-0-521-49510-3; 978-0-521-49842-5, MR1406314
Birkenhake, Ch. (2001), "a/a110040", in Hazewinkel, Michiel, Encyclopedia of Mathematics, Springer, ISBN 978-1556080104

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World