Fine Art


In mathematics, the Banach–Stone theorem is a classical result in the theory of continuous functions on topological spaces, named after the mathematicians Stefan Banach and Marshall Stone.

In brief, the Banach–Stone theorem allows one to recover a compact Hausdorff space from the algebra of scalars (the bounded continuous functions on the space). In modern language, this is the commutative case of the spectrum of a C*-algebra, and the Banach–Stone theorem can be seen as a functional analysis analog of the connection between a ring R and the spectrum of a ring Spec(R) in algebraic geometry.

Statement of the theorem

For a topological space X, let Cb(X; R) denote the normed vector space of continuous, real-valued, bounded functions f : X → R equipped with the supremum norm ||·||∞. This is an algebra, called the algebra of scalars, under pointwise multiplication of functions. For a compact space X, Cb(X; R) is the same as C(X; R), the space of all continuous functions f : X → R. The algebra of scalars is a functional analysis analog of the ring of regular functions in algebraic geometry, there denoted \( \mathcal{O}_X. \)

Let X and Y be compact, Hausdorff spaces and let T : C(X; R) → C(Y; R) be a surjective linear isometry. Then there exists a homeomorphism φ : Y → X and g ∈ C(Y; R) with

\( | g(y) | = 1 \mbox{ for all } y \in Y\)


\( (T f) (y) = g(y) f(\varphi(y)) \mbox{ for all } y \in Y, f \in C(X; \mathbf{R}).\)


The Banach–Stone theorem has some generalizations for vector-valued continuous functions on compact, Hausdorff topological spaces. For example, if E is a Banach space with trivial centralizer and X and Y are compact, then every linear isometry of C(X; E) onto C(Y; E) is a strong Banach–Stone map.

More significantly, the Banach–Stone theorem suggests the philosophy that one can replace a space (a geometric notion) by an algebra, with no loss. Reversing this, it suggests that one can consider algebraic objects, even if they do not come from a geometric object, as a kind of "algebra of scalars". In this vein, any commutative C*-algebra is the algebra of scalars on a Hausdorff space. Thus one may consider noncommutative C*-algebras (and their Spec) as non-commutative spaces. This is the basis of the field of noncommutative geometry.


Araujo, Jesús (2006). "The noncompact Banach–Stone theorem". Journal of Operator Theory 55 (2): 285–294. ISSN 0379-4024. MR 2242851.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World