Fine Art


In mathematics, a complex torus is a particular kind of complex manifold M whose underlying smooth manifold is a torus in the usual sense (i.e. the cartesian product of some number N circles). Here N must be the even number 2n, where n is the complex dimension of M.

All such complex structures can be obtained as follows: take a lattice Λ in Cn considered as real vector space; then the quotient group


is a compact complex manifold. All complex tori, up to isomorphism, are obtained in this way. For n = 1 this is the classical period lattice construction of elliptic curves. For n > 1 Bernhard Riemann found necessary and sufficient conditions for a complex torus to be an algebraic variety; those that are varieties can be embedded into complex projective space, and are the abelian varieties.

The complex torus associated to a lattice spanned by two periods, ω1 and ω2. Corresponding edges are identified.

The actual projective embeddings are complicated (see equations defining abelian varieties) when n > 1, and are really coextensive with the theory of theta-functions of several complex variables (with fixed modulus). There is nothing as simple as the cubic curve description for n = 1. Computer algebra can handle cases for small n reasonably well. By Chow's theorem, no complex torus other than the abelian varieties can 'fit' into projective space.

See also

Complex Lie group


Birkenhake, Christina; Lange, Herbert (1999), Complex tori, Progress in Mathematics 177, Boston, MA: Birkhäuser Boston, ISBN 978-0-8176-4103-0, MR 1713785

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World