# .

# Fourth power

In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So:

n^{4} = n × n × n × n

Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.

The sequence of fourth powers of integers (also known as biquadratic numbers or tesseractic numbers) is:

1, 16, 81, 256, 625, 1296, 2401, 4096, 6561, 10000, ... (sequence A000583 in OEIS)

The last two digits of a fourth power of an integer can be easily shown (for instance, by computing the squares of possible last two digits of square numbers) to be restricted to only twelve possibilities:

00, 01, 16, 21, 25, 36, 41, 56, 61, 76, 81, 96

Every positive integer can be expressed as the sum of at most 19 fourth powers; every sufficiently large integer can be expressed as the sum of at most 16 fourth powers (see Waring's problem).

Euler conjectured a fourth power cannot be written as the sum of 3 smaller fourth powers, but 200 years later this was disproven with:

958004 + 2175194 + 4145604 = 4224814.

Equations containing a fourth power

Fourth degree equations, which contain a fourth degree (but no higher) polynomial are, by the Abel-Ruffini theorem, the highest degree equations solvable using radicals.

See also

Square (algebra)

Cube (algebra)

Exponentiation

Fifth power (algebra)

Perfect power

References

Weisstein, Eric W., "Biquadratic Number", MathWorld.

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License