Fine Art


Hardy's inequality is an inequality in mathematics, named after G. H. Hardy. It states that if \( a_1, a_2, a_3, \dots \) is a sequence of non-negative real numbers which is not identically zero, then for every real number p > 1 one has

\( \sum_{n=1}^\infty \left (\frac{a_1+a_2+\cdots +a_n}{n}\right )^p<\left (\frac{p}{p-1}\right )^p\sum_{n=1}^\infty a_n^p. \)

An integral version of Hardy's inequality states if f is an integrable function with non-negative values, then

\( \int_0^\infty \left (\frac{1}{x}\int_0^x f(t)\, dt\right)^p\, dx\le\left (\frac{p}{p-1}\right )^p\int_0^\infty f(x)^p\, dx. \)

Equality holds if and only if f(x) = 0 almost everywhere.

Hardy's inequality was first published (without proof) in 1920 in a note by Hardy.[1] The original formulation was in an integral form slightly different from the above.
See also

Carleman's inequality


^ Hardy, G.H., Note on a Theorem of Hilbert, Math. Z. 6 (1920), 314–317.


Hardy, G. H.; Littlewood. J.E.; Pólya, G. (1952). Inequalities, 2nd ed. Cambridge University Press. ISBN 0521358809.

Kufner, Alois; Persson, Lars-Erik (2003). Weighted inequalities of Hardy type. World Scientific Publishing. ISBN 9812381953.

Ribarič, M. (1973), "On some inequalities for convex functions", Mathematica Balkanica 3: 435–442.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World