Fine Art


In mathematics, Jordan's inequality, named after Camille Jordan, states that

\( \frac{2}{\pi}x\leq \sin{x} \leq x\text{ for }x \in \left[0,\frac{\pi}{2}\right]\).

It can be proven through the geometry of circles (see drawing).[1]

unit circle with angle x and a second circle with radius |\( EG|=\sin(x) \) around E. \( \begin{align}&|DE|\leq|\widehat{DC}|\leq|\widehat{DG}|\\ \Leftrightarrow &\sin(x) \leq x \leq\tfrac{\pi}{2}\sin(x)\\ \Rightarrow &\tfrac{2}{\pi}x \leq \sin(x)\leq x \end{align} \)


Further reading

Serge Colombo: Holomorphic Functions of One Variable. Taylor & Francis 1983, ISBN 0677059507, p. 167-168 (online copy)
Da-Wei Niu, Jian Cao, Feng Qi: Generealizations of Jordan's Inequality and Concerned Relations. U.P.B. Sci. Bull., Series A, Volume 72, Issue 3, 2010, ISSN 1223-7027
Peng Qi: Jordan's Inequality: Refinements, Generealizations, Applications and related Problems. RGMIA Res Rep Coll (2006), Volume: 9, Issue: 3, Pages: 243–259
Meng-Kuang Kuo: Refinements of Jordan's inequality. Journal of Inequalities and Applications 2011, 2011:130, doi:10.1186/1029-242X-2011-130

External links

Jordan's inequality at PlanetMath
Weisstein, Eric W., "Jordan's inequality", MathWorld.

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World