Fine Art


In algebraic geometry, the Kempf–Ness theorem, introduced by Kempf and Ness (1979), gives a criterion for the stability of a vector in a representation of a complex reductive group. If the complex vector space is given a norm that is invariant under a maximal compact subgroup of the reductive group, then the Kempf–Ness theorem states that a vector is stable if and only if the norm attains a minimum value on the orbit of the vector.


Kempf, George; Ness, Linda (1979), "The length of vectors in representation spaces", Algebraic geometry (Proc. Summer Meeting, Univ. Copenhagen, Copenhagen, 1978), Lecture Notes in Math. 732, Berlin, New York: Springer-Verlag, pp. 233–243, doi:10.1007/BFb0066647, MR 555701

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World