Fine Art


In mathematics, Mahler's 3/2 problem concerns the existence of "Z-numbers".

A Z-number is a real number x such that the fractional parts

\( \left\lbrace x \left(\frac 3 2\right)^ n \right\rbrace \)

are less than 1/2 for all natural numbers n. Kurt Mahler conjectured in 1968 that there are no Z-numbers.

More generally, for a real number α, define Ω(α) as

\( \Omega(\alpha) = \inf_\theta\left({ \limsup_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace - \liminf_{n \rightarrow \infty} \left\lbrace{\theta\alpha^n}\right\rbrace }\right). \)

Mahler's conjecture would thus imply that Ω(3/2) exceeds 1/2. Flatto, Lagarias, and Pollington showed[1] that

\( \Omega\left(\frac p q\right) > \frac 1 p \)

for rational p/q.

Flatto, Leopold; Lagarias, Jeffrey C.; Pollington, Andrew D. (1995). "On the range of fractional parts of ζ { (p/q)n }". Acta Arithmetica LXX (2): 125–147. ISSN 0065-1036. Zbl 0821.11038.

Everest, Graham; van der Poorten, Alf; Shparlinski, Igor; Ward, Thomas (2003). Recurrence sequences. Mathematical Surveys and Monographs 104. Providence, RI: American Mathematical Society. ISBN 0-8218-3387-1. Zbl 1033.11006.

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World