- Art Gallery -


In mathematics, the q-Bessel polynomials are a family of basic hypergeometric orthogonal polynomials in the basic Askey scheme. Roelof Koekoek, Peter A. Lesky, and René F. Swarttouw (2010, 14) give a detailed list of their properties.


The polynomials are given in terms of basic hypergeometric functions and the Pochhammer symbol by [1]:

\( y_{n}(x;a;q)=\;_{2}\phi_1 \left(\begin{matrix} q^{-N} & -aq^{n} \\ 0 \end{matrix} ; q,qx \right) \)


\( \sum_{k=0}^{\infty}(\frac{a^k}{(q;q)_n}*q^{k+1 \choose 2}*y_{m}*(q^k;a;q)*y_{n}*(q^k;a;q)=(q;q)_{n}*(-aq^n;q)_{\infty}\frac{ a^{n}*q^{n+1 \choose 2} }{1+aq^{2n} }\delta_{mn} \) [2]


Roelof Koekoek, Peter Lesky Rene Swarttouw,Hypergeometric Orthogonal Polynomials and their q-Analogues, p526 Springer 2010

Roelof p527

Gasper, George; Rahman, Mizan (2004), Basic hypergeometric series, Encyclopedia of Mathematics and its Applications 96 (2nd ed.), Cambridge University Press, doi:10.2277/0521833574, ISBN 978-0-521-83357-8, MR 2128719
Koekoek, Roelof; Lesky, Peter A.; Swarttouw, René F. (2010), Hypergeometric orthogonal polynomials and their q-analogues, Springer Monographs in Mathematics, Berlin, New York: Springer-Verlag, doi:10.1007/978-3-642-05014-5, ISBN 978-3-642-05013-8, MR 2656096
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F. (2010), http://dlmf.nist.gov/18 |contribution-url= missing title (help), in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W., NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255, MR 2723248

Mathematics Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World