Fine Art


In mathematical analysis, the Rademacher–Menchov theorem, introduced by Rademacher (1922) and Menchoff (1923), gives a sufficient condition for a series of orthogonal functions on an interval to converge almost everywhere.


If the coefficients cν of a series of bounded orthogonal functions on an interval satisfy

\( \sum |c_\nu|^2\log(\nu)^2<\infty \)

then the series converges almost everywhere.


Menchoff, D. (1923), "Sur les séries de fonctions orthogonales. (Premiére Partie. La convergence.)." (in French), Fundamenta Mathematicae 4: 82–105, ISSN 0016-2736
Rademacher, Hans (1922), "Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen", Mathematische Annalen (Springer Berlin / Heidelberg) 87: 112–138, ISSN 0025-5831
Zygmund, A. (2002) [1935], Trigonometric series. Vol. I, II, Cambridge Mathematical Library (3rd ed.), Cambridge University Press, ISBN 978-0-521-89053-3, MR1963498

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World