Fine Art


In algebraic geometry, a Segre surface, studied by Corrado Segre (1884) and Beniamino Segre (1951), is an intersection of two quadrics in 4-dimensional projective space. They are rational surfaces isomorphic to a projective plane blown up in 5 points with no 3 on a line, and are del Pezzo surfaces of degree 4, and have 16 rational lines. The term "Segre surface" is also occasionally used for various other surfaces, such as a quadric in 3-dimensional projective space, or the hypersurface

\( x_1 x_2 x_3 + x_2 x_3 x_4 + x_3 x_4 x_5 + x_4 x_5 x_1 + x_5 x_1 x_2 = 0. \, \)


Segre, Corrado (1884), "Etude des différentes surfaces du 4e ordre à conique double ou cuspidale (générale ou décomposée) considérées comme des projections de l'intersection de deux variétés quadratiques de l'espace à quatre dimensions", Mathematische Annalen (Springer Berlin / Heidelberg) 24: 313–444, doi:10.1007/BF01443412, ISSN 0025-5831
Segre, Beniamino (1951), "On the inflexional curve of an algebraic surface in S4", The Quarterly Journal of Mathematics. Oxford. Second Series 2 (1): 216–220, doi:10.1093/qmath/2.1.216, ISSN 0033-5606, MR 0044861

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World