# .

# Tsen's theorem

In mathematics, Tsen's theorem states that a function field K of an algebraic curve over an algebraically closed field is quasi-algebraically closed (i.e., C1). This implies that the Brauer group of any such field vanishes,[1] and more generally that all the Galois cohomology groups H i(K, K*) vanish for i ≥ 1. This result is used to calculate the étale cohomology groups of an algebraic curve.

The theorem was proved by Zeng Jiongzhi (also rendered as Chiungtze C. Tsen in English) in 1933.

See also

Tsen rank

References

Lorenz, Falko (2008). Algebra. Volume II: Fields with Structure, Algebras and Advanced Topics. Springer. p. 181. ISBN 978-0-387-72487-4. Zbl 1130.12001.

Ding, Shisun; Kang, Ming-Chang; Tan, Eng-Tjioe (1999), "Chiungtze C. Tsen (1898–1940) and Tsen's theorems", Rocky Mountain Journal of Mathematics 29 (4): 1237–1269, doi:10.1216/rmjm/1181070405, ISSN 0035-7596, MR 1743370, Zbl 0955.01031

Lang, Serge (1952), "On quasi algebraic closure", Annals of Mathematics (2nd Ser.) 55: 373–390, ISSN 0003-486X, Zbl 0046.26202

Serre, J. P. (2002), Galois Cohomology, Springer Monographs in Mathematics, Translated from the French by Patrick Ion, Berlin: Springer-Verlag, ISBN 3-540-42192-0, Zbl 1004.12003

Tsen, Chiungtze C. (1933), "Divisionsalgebren über Funktionenkörpern", Nachr. Ges. Wiss. Göttingen, Math.-Phys. Kl. (in German): 335–339, JFM 59.0160.01, Zbl 0007.29401

Retrieved from "http://en.wikipedia.org/"

All text is available under the terms of the GNU Free Documentation License