Fine Art

In mathematics, the Zakharov–Schulman system is a system of nonlinear partial differential equations introduced in (Zakharov & Schulman 1980) to describe the interactions of small amplitude, high frequency waves with acoustic waves. The equations are

\( i\partial_t^{} u + L_1u = \phi u \)
\( L_2 \phi = L_3( | u |^2) \)

where \( L_1, L_2,\) and \( L_3 \), are constant coefficient differential operators.

V.E. Zakharov, E.I. Schulman, Degenerated dispersion laws, motion invariant and kinetic equations, Physica 1D (1980), 185-250.

External links

Zakharov-Schulman_system at the Dispersive PDE Wiki

Undergraduate Texts in Mathematics

Graduate Texts in Mathematics

Graduate Studies in Mathematics

Mathematics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World