In quantum mechanics, Bargmann's limit, named for Valentine Bargmann, provides an upper bound on the number \( N_l \) of bound states in a system. It takes the form

\( N_l \leq \frac{1}{2l+1} \frac{2m}{\hbar^2} \int_0^\infty r |V(r)|_{V<0}\, dr \)

Note that the delta function potential attains this limit.


Bargmann, Proc. Nat. Acad. Sci. 38 961 (1952)
Schwinger, Proc. Nat. Acad. Sci. 47 122 (1961)

Physics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World