Electron capture (K-electron capture, also K-capture, or L-electron capture, L-capture) is a process in which the proton-rich nucleus of an electrically neutral atom absorbs an inner atomic electron, usually from the K or L electron shell. This process thereby changes a nuclear proton to a neutron and simultaneously causes the emission of an electron neutrino.

p + e → n + ν e

The daughter nuclide, if it is in an excited state, then transitions to its ground state. Usually, a gamma ray is emitted during this transition, but nuclear de-excitation may also take place by internal conversion.

Following capture of an inner electron from the atom, an outer electron replaces the electron that was captured and one or more characteristic X-ray photons is emitted in this process. Electron capture sometimes also results in the Auger effect, where an electron is ejected from the atom's electron shell due to interactions between the atom's electrons in the process of seeking a lower energy electron state.

Following electron capture, the atomic number is reduced by one, the neutron number is increased by one, and there is no change in atomic mass. Simple electron capture results in a neutral atom, since the loss of the electron in the electron shell is balanced by a loss of positive nuclear charge. However, a positive atomic ion may result from further Auger electron emission.

Electron capture is an example of weak interaction, one of the four fundamental forces.

Electron capture is the primary decay mode for isotopes with a relative superabundance of protons in the nucleus, but with insufficient energy difference between the isotope and its prospective daughter (the isobar with one less positive charge) for the nuclide to decay by emitting a positron. Electron capture is always an alternate decay mode for radioactive isotopes that do not have sufficient energy to decay by positron emission. It is sometimes called inverse beta decay, though this term can also refer to the interaction of an electron antineutrino with a proton.[1]

If the energy difference between the parent atom and the daughter atom is less than 1.022 MeV, positron emission is forbidden as not enough decay energy is available to allow it, and thus electron capture is the sole decay mode. For example, rubidium-83 (37 protons, 46 neutrons) will decay to krypton-83 (36 protons, 47 neutrons) solely by electron capture (the energy difference, or decay energy, is about 0.9 MeV).

A free proton cannot normally be changed to a free neutron by this process; the proton and neutron must be part of a larger nucleus.


The theory of electron capture was first discussed by Gian-Carlo Wick in a 1934 paper, and then developed by Hideki Yukawa and others. K-electron capture was first observed by Luis Alvarez, in vanadium-48. He reported it in a 1937 paper in Physical Review.[2][3][4] Alvarez went on to study electron capture in gallium-67 and other nuclides.[2][5][6]
Reaction details


26 13Al + e26 12Mg + νe
59 28Ni + e59 27Co + νe
40 19AK + e40 18Ar + νe

The electron that is captured is one of the atom's own electrons, and not a new, incoming electron, as might be suggested by the way the above reactions are written. Radioactive isotopes that decay by pure electron capture can be inhibited from radioactive decay if they are fully ionized ("stripped" is sometimes used to describe such ions). It is hypothesized that such elements, if formed by the r-process in exploding supernovae, are ejected fully ionized and so do not undergo radioactive decay as long as they do not encounter electrons in outer space. Anomalies in elemental distributions are thought[by whom?] to be partly a result of this effect on electron capture. Inverse decays can also be induced by full ionisation; for instance, 163Ho decays into 163Dy by electron capture; however, a fully ionised 163Dy decays into a bound state of 163Ho by the process of bound-state β− decay.[7]

Chemical bonds can also affect the rate of electron capture to a small degree (in general, less than 1%) depending on the proximity of electrons to the nucleus. For example in 7Be, a difference of 0.9% has been observed between half-lives in metallic and insulating environments.[8] This relatively large effect is due to the fact that beryllium is a small atom whose valence electrons are close to the nucleus.

Around the elements in the middle of the periodic table, isotopes that are lighter than stable isotopes of the same element tend to decay through electron capture, while isotopes heavier than the stable ones decay by electron emission. Electron capture happens most often in the heavier neutron-deficient elements where the mass change is smallest and positron emission isn't always possible. When the loss of mass in a nuclear reaction is greater than zero but less than 2m[0-1e-], the process cannot occur by positron emission but is spontaneous for electron capture.
Common examples

Some common radioisotopes that decay by electron capture include:

Radioisotope Half-life
7Be 53.28 d
37Ar 35.0 d
41Ca 1.03×105 y
44Ti 60 y
49V 337 d
51Cr 27.7 d
53Mn 3.7×106 y
55Fe 2.6 y
57Co 271.8 d
59Ni 7.5×104 y
67Ga 3.260 d
68Ge 270.8 d
72Se 8.5 d

For a full list, see the table of nuclides.

"The Reines-Cowan Experiments: Detecting the Poltergeist" (PDF). Los Alamos National Laboratory 25: 3. 1997.
Luis W. Alvarez, W. Peter Trower (1987). "Chapter 3: K-Electron Capture by Nuclei (with the commentary of Emilio Segré)" In Discovering Alvarez: selected works of Luis W. Alvarez, with commentary by his students and colleagues. University of Chicago Press, pp. 11–12, ISBN 978-0-226-81304-2.
"Luis Alvarez, The Nobel Prize in Physics 1968", biography, Accessed October 7, 2009.
Alvarez, Luis W. (1937). "Nuclear K Electron Capture". Physical Review 52: 134–135. Bibcode:1937PhRv...52..134A. doi:10.1103/PhysRev.52.134.
Alvarez, Luis W. (1937). "Electron Capture and Internal Conversion in Gallium 67". Physical Review 53: 606. Bibcode:1938PhRv...53..606A. doi:10.1103/PhysRev.53.606.
Alvarez, Luis W. (1938). "The Capture of Orbital Electrons by Nuclei". Physical Review 54: 486–497. Bibcode:1938PhRv...54..486A. doi:10.1103/PhysRev.54.486.
Fritz Bosch (1995). "Manipulation of Nuclear Lifetimes in Storage Rings" (PDF). Physica Scripta T59: 221–229.
B. Wang; et al. (2006). "Change of the 7Be electron capture half-life in metallic environments". The European Physical Journal A 28: 375–377. Bibcode:2006EPJA...28..375W. doi:10.1140/epja/i2006-10068-x. (subscription required)

Physics Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World