Fine Art

Superregnum: Eukaryota
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Superphylum: Deuterostomia
Phylum: Chordata
Cladus: Craniata
Subphylum: Vertebrata
Infraphylum: Gnathostomata
Superclassis: Tetrapoda
Cladus: Reptiliomorpha
Cladus: Amniota
Classis: Reptilia
Cladus: Eureptilia
Cladus: Romeriida
Subclassis: Diapsida
Cladus: Sauria
Infraclassis: Archosauromorpha
Cladus: Crurotarsi
Divisio: Archosauria
Subsectio: Ornithodira
Subtaxon: Dinosauromorpha
Cladus: Dinosauria
Ordo: Saurischia
Cladus: Theropoda
Cladus: Neotheropoda
Infraclassis: Aves
Cladus: Euavialae
Cladus: Avebrevicauda
Cladus: Pygostylia
Cladus: Ornithothoraces
Cladus: Euornithes
Cladus: Ornithuromorpha
Cladus: Ornithurae
Cladus: Carinatae
Parvclassis: Neornithes
Cohors: Neognathae
Ordo: Ciconiiformes

Familia: Ciconiidae
Genera: Anastomus – Ciconia – Ephippiorhynchus – Jabiru – Leptoptilos – Mycteria
Genera: Anastomus - Ciconia - Ephippiorhynchus - Jabiru - Leptoptilos -


Ciconiidae Sundevall, 1836

Type genus: Ciconia
Brisson, 1760


Kungl. Svenska vetenskapsakademiens handlingar ser. 3, 23: 122 'Ciconides'

Vernacular names
العربية: لقلق
беларуская: Бусліныя
corsu: Cigogna
čeština: Čápovití
dansk: Storke
Deutsch: Störche
Ελληνικά: Πελαργίδαι
English: Stork
Esperanto: Cikoniedoj
español: Cigüeñas
Nordfriisk: Aarebaarin
magyar: Gólyafélék
Ido: Cikonio
italiano: Ciconidi
日本語: コウノトリ科
한국어: 황새과
Limburgs: Storke
lietuvių: Gandriniai
македонски: Штркови
Nederlands: Ooievaars
polski: Bocianowate
português: Cegonha
русский: Аистовые
svenska: Storkar
ไทย: วงศ์นกกระสา
українська: Лелекоподібні
中文: 鹳科

Storks are large, long-legged, long-necked wading birds with long, stout bills. They belong to the family called Ciconiidae, and make up the order Ciconiiformes /sɪˈkoʊni.ɪfɔːrmiːz/. Ciconiiformes previously included a number of other families, such as herons and ibises, but those families have been moved to other orders.[2]

Storks dwell in many regions and tend to live in drier habitats than the closely related herons, spoonbills and ibises; they also lack the powder down that those groups use to clean off fish slime. Bill-clattering is an important mode of communication at the nest. Many species are migratory. Most storks eat frogs, fish, insects, earthworms, small birds and small mammals. There are 19 living species of storks in six genera.

Various terms are used to refer to groups of storks,[3] two frequently used ones being a muster of storks and a phalanx of storks.

Storks tend to use soaring, gliding flight, which conserves energy. Soaring requires thermal air currents. Ottomar Anschütz’s famous 1884 album of photographs of storks inspired the design of Otto Lilienthal's experimental gliders of the late nineteenth century. Storks are heavy, with wide wingspans: the marabou stork, with a wingspan of 3.2 m (10 ft 6 in) and weight up to 8 kg (18 lb), joins the Andean condor in having the widest wingspan of all living land birds.

Their nests are often very large and may be used for many years. Some nests have been known to grow to over two meters (six feet) in diameter and about three meters (10 feet) in depth. All storks were once thought to be monogamous, but this is only partially true. Some species may change mates after migrations, and may migrate without a mate.

Storks’ large size, serial monogamy, and faithfulness to an established nesting site contribute to their prominence in mythology and culture.

Mycteria storks, like this yellow-billed stork, have sensitive bills that allow them to hunt by touch

Storks range in size from the marabou, which stands 152 cm (60 in) tall and can weigh 8.9 kg (19+1⁄2 lb), to the Abdim's stork, which is only 75 cm (30 in) high and weighs only 1.3 kg (2+3⁄4 lb). Their shape is superficially similar to the herons, with long legs and necks, but they are more heavy-set. There is some sexual dimorphism (differences between males and females) in size, with males being up to 15% bigger than females in some species (for example the saddle-billed stork), but almost no difference in appearance. The only difference is in the colour of the iris of the two species in the genus Ephippiorhynchus.[4]

The bills of the storks are large to very large, and vary considerably between the genera. The shape of the bills is linked to the diet of the different species. The large bills of the Ciconia storks are the least specialised. Larger are the massive and slightly upturned bills of the Ephippiorhynchus and the jabiru. These have evolved to hunt for fish in shallow water. Larger still are the massive daggers of the two adjutants and marabou (Leptoptilos), which are used to feed on carrion and in defence against other scavengers, as well as for taking other prey.[4] The long, ibis-like downcurved bills of the Mycteria storks have sensitive tips that allow them to detect prey by touch (tactilocation) where cloudy conditions would not allow them to see it.[5] The most specialised bills of any storks are those of the two openbills (Anastomus.), which as their name suggested is open in the middle when their bill is closed. These bills have evolved to help openbills feed on their only prey item, aquatic snails.[6]

Although it is sometimes reported that storks lack syrinxes and are mute,[7] they do have syrinxes,[8] and are capable of making some sounds, although they do not do so often.[4][9] The syrinxes of the storks are "variably degenerate" however,[8] and the syringeal membranes of some species are found between tracheal rings or cartilage, an unusual arrangement shared with the ovenbirds.[10]
Distribution and habitat
Lesser adjutants will forage in marine habitats, unlike most storks
Marabou stork at Etosha National Park in Namibia
See also: List of Ciconiiformes by population

The storks have a nearly cosmopolitan distribution, being absent from the poles, most of North America and large parts of Australia. The centres of stork diversity are in tropical Asia and sub-Saharan Africa, with eight and six breeding species respectively. Just three species are present in the New World: wood stork, maguari stork and jabiru, which is the tallest flying bird of the Americas. Two species, white and black stork, reach Europe and western temperate Asia, while one species, Oriental stork, reaches temperate areas of eastern Asia, and one species, black-necked stork, is found in Australasia.[4]

Storks are more diverse and common in the tropics, and the species that live in temperate climates for the most part migrate to avoid the worst of winter. They are fairly diverse in their habitat requirements. Some species, particularly the Mycteria "wood storks" and Anastomus openbills, are highly dependent on water and aquatic prey, but many other species are far less dependent on this habitat type, although they will frequently make use of it. Species like the marabou and Abdim's stork will frequently be found foraging in open grasslands of savannah. Preferred habitats include flooded grasslands, light woodland, marshes and paddyfields, wet meadows, river backwaters and ponds. Many species will select shallow pools, particularly when lakes or rivers are drying out, as they concentrate prey and make it harder for prey to escape, or when monsoonal rainfall increases water depth of larger waterbodies.[4][11]

Less typical habitats include the dense temperate forests used by European black storks, or the rainforest habitat sought by Storm's stork in South East Asia. They generally avoid marine habitats, with the exception of the lesser adjutant, milky stork and wood stork, all of which forage in mangroves, lagoons and estuarine mudflats. A number of species, especially woolly-necked storks, black-necked storks, Asian openbills and lesser adjutant Storks in south Asia, have adapted to highly modified human habitats, either for foraging or breeding or both.[11][12][13][14] In the absence of persecution several species breed close to people, and species such as the marabou, greater adjutant, and white stork will feed at landfill sites.[4][15]
Migration and movements
Abdim's storks are regular intra-African migrants

The storks vary in their tendency towards migration. Temperate species like the white stork, black stork and Oriental stork undertake long annual migrations in the winter. The routes taken by these species have developed to avoid long distance travel across water, and from Europe this usually means flying across the Straits of Gibraltar or east across the Bosphorus and through Israel and the Sinai.[4] Studies of young birds denied the chance to travel with others of their species have shown that these routes are at least partially learnt, rather than being innate as they are in passerine migrants.[16] Migrating black storks are split between those that make stopovers on the migration between Europe and their wintering grounds in Africa, and those that don't.[17]

The Abdim's stork is another migrant, albeit one that migrates within the tropics. It breeds in northern Africa, from Senegal to the Red Sea, during the wet season, and then migrates to Southern Africa.[18] Many species that aren't regular migrants will still make smaller movements if circumstances require it; others may migrate over part of their range. This can also include regular commutes from nesting sites to feeding areas. Wood storks have been observed feeding 130 km (80 mi) from their breeding colony.[4]
Feeding and diet
African openbill foraging in shallow water

The storks are carnivorous, taking a range of reptiles, small mammals, insects, fish, amphibians and other small invertebrates. Any plant material consumed is usually by accident. Mycteria storks are specialists in feeding on aquatic vertebrates, particularly when prey is concentrated by lowering water levels or flooding into shallows. On marine mudflats and mangrove swamps in Sumatra, milky storks feed on mudskippers, probing the burrow with the bill and even the whole head into the mud. The characteristic feeding method involves standing or walking in shallow water and holding the bill submerged in the water. When contact is made with prey the bill reflexively snaps shut in 25 milliseconds, one of the fastest reactions known in any vertebrate. The reaction is able to distinguish between prey items and inanimate objects like branches, although the exact mechanism is unknown.[19][4]

Openbills are specialists in freshwater molluscs, particularly apple snails. They feed in small groups,[11] and sometimes African openbills ride on the backs of hippos while foraging. Having caught a snail it will return to land or at least to the shallows to eat it. The fine tip of the bill of the openbills is used to open the snail, and the saliva has a narcotic effect, which causes the snail to relax and simplifies the process of extraction.[4]

The other genera of storks are more generalised. Ciconia storks are very generalised in their diets, although Abdim's stork is something of a specialist in feeding in large flocks on swarms of locusts and at wildfires,[4] although other storks will opportunistically feed in this way if the opportunity arises.[20] This is why white storks and Abdim's storks are known as "grasshopper birds". Ephippiorhynchus are carnivorous though have a very diverse diet when living on human modified habitats such as agricultural landscapes.[21] The foraging method used by the generalists is to stalk or walk across grassland or shallow water, watching for prey.[4]
Painted storks at a colony

The storks range from being solitary breeders through loose breeding associations to fully colonial. The jabiru, Ephippiorhynchus storks and several species of Ciconia are entirely solitary when breeding.[14][22][23] In contrast the Mycteria storks, Abdim's stork, openbills and Leptoptilos storks all breed in colonies which can range from a couple of pairs to thousands.[12][13] Many of these species breed in colonies with other waterbirds, which can include other species of storks, herons and egrets, pelicans, cormorants and ibises. White storks, Oriental storks and Maguari storks are all loosely colonial, and may breed in nests that are within visual range of others of the same species, but have little to do with one another. They also may nest solitarily, and the reasons why they choose to nest together or apart are not understood.[4]

A DNA study found that the families Ardeidae, Balaenicipitidae, Scopidae and the Threskiornithidae belong to the Pelecaniformes. This would make Ciconiidae the only group.[24][25]

Storks were distinct and possibly widespread by the Oligocene. Like most families of aquatic birds, storks seem to have arisen in the Palaeogene, maybe 40–50 million years ago (mya). For the fossil record of living genera, documented since the Middle Miocene (about 15 mya) at least in some cases, see the genus articles.

Though some storks are highly threatened, no species or subspecies are known to have gone extinct in historic times. A Ciconia bone found in a rock shelter on the island of Réunion was probably of a bird taken there as food by early settlers; no known account mentions the presence of storks on the Mascarene Islands.
Extant storks
Image Genus Living species
Flickr - don macauley - Mycteria ibis 3.jpg Mycteria

Milky stork, Mycteria cinerea
Yellow-billed stork, Mycteria ibis
Painted stork, Mycteria leucocephala
Wood stork, Mycteria americana

African openbill, Anastomus lamelligerus, Chobe National Park, Botswana (31548249924), crop.jpg Anastomus

Asian openbill, Anastomus oscitans
African openbill, Anastomus lamelligerus

White Stork RWD.jpg Ciconia

Abdim's stork, Ciconia abdimii
Woolly-necked stork, Ciconia episcopus
Storm's stork, Ciconia stormi
Maguari stork, Ciconia maguari
Oriental stork, Ciconia boyciana (formerly in C. ciconia)
White stork, Ciconia ciconia
Black stork, Ciconia nigra

Saddle-billed Stork (Ephippiorhynchus senegalensis) female.jpg Ephippiorhynchus

Black-necked stork, Ephippiorhynchus asiaticus
Saddle-billed stork, Ephippiorhynchus senegalensis

Jabiru (Jabiru mycteria) 2.JPG Jabiru

Jabiru, Jabiru mycteria

Greater Adjutant Leptoptilos dubius by Dr. Raju Kasambe (1).JPG Leptoptilos

Lesser adjutant, Leptoptilos javanicus
Greater adjutant, Leptoptilos dubius
Marabou stork, Leptoptilos crumenifer

Fossil storks

Genus Palaeoephippiorhynchus (fossil: Early Oligocene of Fayyum, Egypt)
Genus Grallavis (fossil: Early Miocene of Saint-Gérand-le-Puy, France, and Djebel Zelten, Libya) – may be same as Prociconia
Ciconiidae gen. et sp. indet. (Ituzaingó Late Miocene of Paraná, Argentina)[note 1][26][27]
Ciconiidae gen. et sp. indet. (Puerto Madryn Late Miocene of Punta Buenos Aires, Argentina)[note 2][27]
Genus Prociconia (fossil: Late Pleistocene of Brazil) – may belong to modern genus Jabiru or Ciconia
Genus Pelargosteon (fossil: Early Pleistocene of Romania)
Ciconiidae gen. et sp. indet. – formerly Aquilavus/Cygnus bilinicus (fossil: Early Miocene of Břešťany, Czech Republic)
cf. Leptoptilos gen. et sp. indet. – formerly L. siwalicensis (fossil: Late Miocene? – Late Pliocene of Siwalik, India)[28]
Ciconiidae gen. et sp. indet. (fossil: Late Pleistocene of San Josecito Cavern, Mexico)[29]

The fossil genera Eociconia (Middle Eocene of China) and Ciconiopsis (Deseado Early Oligocene of Patagonia, Argentina) are often tentatively placed with this family. A "ciconiiform" fossil fragment from the Touro Passo Formation found at Arroio Touro Passo (Rio Grande do Sul, Brazil) might be of the living wood stork M. americana; it is at most of Late Pleistocene age, a few 10,000s of years.[30]

This section does not cite any sources. Please help improve this section by adding citations to reliable sources. Unsourced material may be challenged and removed. (May 2019) (Learn how and when to remove this template message)
European white storks in Alsace, France

The Modern English word can be traced back to Proto-Germanic *sturkaz. Nearly every Germanic language has a descendant of this proto-language word to indicate the (white) stork. Related names also occur in Latvian, stārķis, and some Slavic languages, e.g. štorklja in Slovenian and “щъркел” [shtŭrkel] in Bulgarian, originating as Germanic loanwords.

According to the New Shorter Oxford English Dictionary, the Germanic root is probably related to the modern English "stark", in reference to the stiff or rigid posture of a European species, the white stork. A non-Germanic word linked to it may be Greek torgos ("vulture").

In some West Germanic languages cognate words of a different etymology exist, e.g. ooievaar in Dutch. They originate from *uda-faro, uda being related to water meaning something like swamp or moist area and faro being related to fare; so *uda-faro is something like he who walks in the swamp. In later times this name got reanalysed as *ōdaboro, ōda "fortune, wealth" + boro "bearer" meaning he who brings wealth adding to the myth of storks as maintainers of welfare and bringers of children.
European white stork in a nest in Bisag, Croatia

In Estonian, "stork" is toonekurg, which is derived from toonela (underworld in Estonian folklore) + kurg (crane). At the times storks were named, the now-rare black stork was probably the more common species.
In fiction

The Stork has many stories surrounding it, like in Aesop's (6th century BCE) fables The Farmer and the Stork and The Fox and the Stork. The first fable begins with a farmer plowing his fields, sowing his seeds and spreading his nets. These nets catch several cranes who hopped behind him picking up the seed. Along with the cranes tangled in his net, the farmer discovered a stork with a broken leg. The stork begged the farmer to spare his life, arguing that he was not a crane, but a stork. He pointed to his feathers and told the farmer that they didn't resemble a crane's feathers in the least. The farmer laughed at the stork and said, "I have taken you with these robbers, the cranes, and you must die in their company."[31][32][33]

A common legend is that storks deliver babies to their mothers instead of mothers giving birth.[34]

Storks play a prominent role in Hans Christian Andersen's lengthy fairy tale, "The Marsh King's Daughter."[35]

Tarsometatarsus fragments somewhat similar to Mycteria

Specimen MEF 1363: Incomplete skeleton of a large stork somewhat similar to Jabiru but apparently more plesiomorphic


Brands, Sheila (14 August 2008). "Systema Naturae 2000 / Classification, Class Aves". Project: The Taxonomicon. Retrieved 11 June 2012.
"Anastomus lamelligerus subsp. lamelligerus".
About the Wood Stork: Denizens of the Wetlands Archived 2011-07-27 at the Wayback Machine, Accessed on 13.12.2010
del Hoyo, J. Elliott, A. & Sargatal, J. (1992). Handbook of the Birds of the World. Volume 1: Ostrich to Ducks. Lynx Edicions. ISBN 84-87334-10-5.
Coulter, Malcolm C.; Bryan, A. Lawrence (1 January 1993). "Foraging Ecology of Wood Storks (Mycteria americana) in East-Central Georgia I. Characteristics of Foraging Sites". Colonial Waterbirds. 16 (1): 59–70. doi:10.2307/1521557. JSTOR 1521557.
Kahl, M. P. (January 1971). "Food and feeding behavior of Openbill Storks". Journal of Ornithology. 112 (1): 21–35. doi:10.1007/BF01644077. S2CID 1484358.
Spring Alive. "A bird without voice". Retrieved 7 March 2017.
Griffiths, Carole S. (October 1994). "Monophyly of the Falconiformes Based on Syringeal Morphology". The Auk. 111 (4): 787–805. doi:10.2307/4088811. JSTOR 4088811. S2CID 53388019.
Sundar, K.S. Gopi (2005). "An instance of mortality and notes on behaviour of black-necked storks Ephippiorhynchus asiaticus". Journal of the Bombay Natural History Society. 102 (1): 99–102.
Casey, Richard M.; Gaunt, Abbot S. (September 1985). "Theoretical models of the avian syrinx". Journal of Theoretical Biology. 116 (1): 45–64. doi:10.1016/S0022-5193(85)80130-2.
Sundar, K.S. Gopi (2006). "Flock Size, Density and Habitat Selection of Four Large Waterbirds Species in an Agricultural Landscape in Uttar Pradesh, India: Implications for Management". Waterbirds. 29 (3): 365–374. doi:10.1675/1524-4695(2006)29[365:FSDAHS]2.0.CO;2.
Koju, Roshila; Maharjan, Bijay; Gosai, Kamal Raj; Kittur, Swati; Sundar, K.S. Gopi (2019). "Ciconiiformes nesting on trees in cereal-dominated farmlands: importance of scattered trees for heronries in lowland Nepal". Waterbirds. 42 (4): 355–365. doi:10.1675/063.042.0401. S2CID 210861485.
Sundar, K.S. Gopi; Maharjan, Bijay; Koju, Roshila; Kittur, Swati; Gosai, Kamal Raj (2016). "Factors affecting provisioning times of two stork species in lowland Nepal". Waterbirds. 39 (4): 365–374. doi:10.1675/063.039.0406. S2CID 90680383.
Kittur, Swati; Sundar, K. S. Gopi (2021). "Of irrigation canals and multifunctional agroforestry: Traditional agriculture facilitates Woolly-necked Stork breeding in a north Indian agricultural landscape". Global Ecology and Conservation. 30: e01793.
Tortosa, F. S.; Caballero, J. M.; Reyes-López, J. (March 2002). "Effect of Rubbish Dumps on Breeding Success in the White Stork in Southern Spain". Waterbirds. 25 (1): 39–43. doi:10.1675/1524-4695(2002)025[0039:EORDOB]2.0.CO;2.
Chernetsov, N.; Berthold, P.; Querner, U. (22 February 2004). "Migratory orientation of first-year white storks (Ciconia ciconia): inherited information and social interactions". Journal of Experimental Biology. 207 (6): 937–943. doi:10.1242/jeb.00853. PMID 14766952.
Chevallier, D.; Le Maho, Y.; Brossault, P.; Baillon, F.; Massemin, S. (5 June 2010). "The use of stopover sites by Black Storks (Ciconia nigra) migrating between West Europe and West Africa as revealed by satellite telemetry". Journal of Ornithology. 152 (1): 1–13. doi:10.1007/s10336-010-0536-6. S2CID 21513063.
Adjakpa, Jacques Boco (January 2000). "The breeding biology of Abdim's Stork in the far north of Benin". Ostrich. 71 (1–2): 61–63. doi:10.1080/00306525.2000.9639869. S2CID 84995962.
Kahl, M. P.; Peacock, L. J. (3 August 1963). "The Bill-snap Reflex : a Feeding Mechanism in the American Wood Stork". Nature. 199 (4892): 505–506. Bibcode:1963Natur.199..505K. doi:10.1038/199505a0. PMID 14058622. S2CID 332546.
Dean, G. J. W. (June 1964). "Stork and egret as predators of the red locust in the Rukwa Valley outbreak area". Ostrich. 35 (2): 95–100. doi:10.1080/00306525.1964.9633490.
Sundar, K.S. Gopi (2011). "Farmland foods: Black-necked Stork Ephippiorhynchus asiaticus prey items in an agricultural landscape" (PDF). Forktail. 27: 98–99.
Sundar, K.S. Gopi (2003). "Notes on the breeding biology of the Black-necked Stork Ephippiorhynchus asiaticus in Etawah and Mainpuri districts, Uttar Pradesh, India". Forktail. 19: 15–20.
Sundar, K.S. Gopi (2011). "Agricultural intensification, rainfall patterns, and large waterbird breeding success in the extensively cultivated landscape of Uttar Pradesh, India". Biological Conservation. 144 (12): 3055–3063. doi:10.1016/j.biocon.2011.09.012.
Gibb, Gillian C.; Kennedy, Martyn; Penny, David (2013). "Beyond phylogeny: Pelecaniform and ciconiiform birds, and long-term niche stability". Molecular Phylogenetics and Evolution. 68 (2): 229–238. doi:10.1016/j.ympev.2013.03.021. PMID 23562800.
Kuramoto, Tae; Nishihara, Hidenori; Watanabe, Maiko; Okada, Norihiro (2015). "Determining the Position of Storks on the Phylogenetic Tree of Waterbirds by Retroposon Insertion Analysis". Genome Biology and Evolution. 7 (12): 3180–3189. doi:10.1093/gbe/evv213. PMC 4700946. PMID 26527652.
Cione, Alberto Luis; de las Mercedes Azpelicueta, María; Bond, Mariano; Carlini, Alfredo A.; Casciotta, Jorge R.; Cozzuol, Mario Alberto; de la Fuente, Marcelo; Gasparini, Zulma; Goin, Francisco J.; Noriega, Jorge; Scillatoyané, Gustavo J.; Soibelzon, Leopoldo; Tonni, Eduardo Pedro; Verzi, Diego; Guiomar Vucetich, María (2000). "Miocene vertebrates from Entre Ríos province, eastern Argentina" (PDF). In Aceñolaza, F.G.; Herbst, R. (eds.). El Neógeno de Argentina. Serie Correlación Geológica (in English and Spanish). 14. INSUGEO. pp. 191–237. Archived from the original (PDF) on 2008-02-28.
Noriega, Jorge Ignacio & Cladera, Gerardo (2005). First Record of Leptoptilini (Ciconiiformes: Ciconiidae) in the Neogene of South America. Abstracts of Sixth International Meeting of the Society of Avian Paleontology and Evolution: 47. PDF fulltext Archived 2008-02-28 at the Wayback Machine
Specimens BMNH 39741 (holotype, left proximal tarsometatarsus) and BMNH 39734 (right distal tibiotarsus). Similar to Ephippiorhynchus and Leptotilos, may be from a small female of Leptotilos falconeri, from L. dubius, or from another species: Louchart, Antoine; Vignaud, Patrick; Likius, Andossa; Brunet, Michel & White, Tim D. (2005). "A large extinct marabou stork in African Pliocene hominid sites, and a review of the fossil species of Leptoptilos" (PDF). Acta Palaeontologica Polonica. 50 (3): 549–563.
Distal radius of a mid-sized Ciconia or smallish Mycteria: Steadman, David W.; Arroyo-Cabrales, Joaquin; Johnson, Eileen & Guzman, A. Fabiola (1994). "New Information on the Late Pleistocene Birds from San Josecito Cave, Nuevo León, Mexico" (PDF). Condor. 96 (3): 577–589. doi:10.2307/1369460. JSTOR 1369460.
Schmaltz Hsou, Annie (2007). O estado atual do registro fóssil de répteis e aves no Pleistoceno do Estado do Rio Grande do Sul, Brasil ["The current state of the fossil record of Pleistocene reptiles and birds of Rio Grande do Sul"]. Talk held on 2007-JUN-20 at Quaternário do RS: integrando conhecimento, Canoas, Rio Grande do Sul, Brazil. PDF abstract
"The Farmer and The Stork". Fables of Aesop. 2013-11-18. Retrieved 2020-07-17.
Schefold, Karl; Giuliani, Luca (1992). Gods and Heroes in Late Archaic Greek Art. Cambridge University Press. p. 75. ISBN 978-0-521-32718-3.
Lewis, Professor of English Jayne Elizabeth; Lewis, Jayne Elizabeth (1996). The English Fable: Aesop and Literary Culture, 1651-1740. Cambridge University Press. pp. 37–38. ISBN 978-0-521-48111-3.
June 2018, Emma Bryce-Live Science Contributor 13. "What's Behind the Myth That Storks Deliver Babies?". Retrieved 2020-07-17.
"H.C. Andersen Center, The Marsh King's Daughter". H.C. Andersen Center. Retrieved 2021-06-10.

Birds, Fine Art Prints

Birds Images

Biology Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World