Fine Art

Life-forms

Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: ParaHoxozoa
Cladus: Bilateria
Cladus: Nephrozoa
Superphylum: Deuterostomia
Phylum: Chordata
Cladus: Olfactores
Subphylum: Vertebrata
Infraphylum: Gnathostomata
Megaclassis: Osteichthyes
Cladus: Sarcopterygii
Cladus: Rhipidistia
Cladus: Tetrapodomorpha
Cladus: Eotetrapodiformes
Cladus: Elpistostegalia
Superclassis: Tetrapoda
Cladus: Reptiliomorpha
Cladus: Amniota
Cladus: Synapsida
Cladus: Eupelycosauria
Cladus: Metopophora
Cladus: Haptodontiformes
Cladus: Sphenacomorpha
Cladus: Sphenacodontia
Cladus: Pantherapsida
Cladus: Sphenacodontoidea
Cladus: Therapsida
Cladus: Theriodontia
Cladus: Eutheriodontia
Cladus: Cynodontia
Cladus: Epicynodontia
Cladus: Eucynodontia
Cladus: Probainognathia
Cladus: Prozostrodontia
Cladus: Mammaliamorpha
Cladus: Mammaliaformes
Classis: Mammalia
Cladus: Theriimorpha
Cladus: Theriiformes
Cladus: Trechnotheria
Cladus: Cladotheria
Cladus: Prototribosphenida
Cladus: Zatheria
Cladus: Tribosphenida
Subclassis: Theria
Cladus: Metatheria
Cladus: Marsupialiformes
Infraclassis: Marsupialia
Superordo: Australidelphia
Cladus: Eomarsupialia
Ordo: Diprotodontia
Subordo: Macropodiformes
Superfamilia: Macropodoidea

Familia: Macropodidae
Subfamiliae (3): LagostrophinaeMacropodinae – †Sthenurinae
Genera incertae sedis: †Cookeroo – †Dorcopsoides – †Procoptodon – †Protemnodon – †Simosthenurus – †Watutia

Name

Macropodidae Gray, 1821: 308 ["Macropidae"]
References
Primary references

Gray, J.E. 1821. On the Natural Arrangement of Vertebrose Animals. London Medical Repository 15: 296–310. HathiTrust. Reference page.

Additional references

Groves, C.P. 2005. Order Diprotodontia. Pp. 43–70 in Wilson, D.E. & Reeder, D.M. (eds.) . Mammal Species of the World: a taxonomic and geographic reference. 3rd edition. The Johns Hopkins University Press: Baltimore. 2 volumes. ISBN 978-0-8018-8221-0. Reference page.
Celik, M., Cascini, M., Haouchar, D., van Der Burg, C., Dodt, W., Evans, A.R., Prentis, P., Bunce, M., Fruciano, C. & Phillips, M.J. 2019. A molecular and morphometric assessment of the systematics of the Macropus complex clarifies the tempo and mode of kangaroo evolution. Zoological Journal of the Linnean Society 186(3): 793–812. DOI: 10.1093/zoolinnean/zlz005 Paywall Reference page.

Vernacular names

беларуская: Кенгуровыя বাংলা: ক্যাংগারু, ক্যাঙ্গারু català: Cangurs čeština: Klokanovití Deutsch: Kängurus English: Kangaroos and Wallabies español: Canguros suomi: Kengurut français: Kangourou עברית: קנגורו हिन्दी: कंगारू hrvatski: Klokani Bahasa Indonesia: Kanguru italiano: Canguri 日本語: カンガルー科 한국어: 캥거루 Lëtzebuergesch: Känguruen македонски: Кенгури Nederlands: Kangoeroes norsk nynorsk: Kenguru norsk: Kenguru polski: Kangurowate português: Cangurus slovenčina: Kengurovité slovenščina: Kenguru svenska: Kängurudjur Türkçe: Kangurugiller українська: Кенгурові 中文: 袋鼠

Macropodidae is a family of marsupials that includes kangaroos, wallabies, tree-kangaroos, wallaroos, pademelons, quokkas, and several other groups. These genera are allied to the suborder Macropodiformes, containing other macropods, and are native to the Australian continent (the mainland and Tasmania), New Guinea and nearby islands.[2]
Description
A Bennett's wallaby skull

Although omnivorous kangaroos lived in the past, these were not members of the family Macropodidae; modern macropods are generally herbivorous. Some are browsers, but most are grazers and are equipped with appropriately specialised teeth for cropping and grinding up fibrous plants, in particular grasses and sedges. Modern omnivorous kangaroos generally belong to a different family (for example, the Musky rat-kangaroo). In general, macropods have a broad, straight row of cutting teeth at the front of the mouth, no canine teeth, and a gap before the molars. The molars are large and, unusually, do not appear all at once but a pair at a time at the back of the mouth as the animal ages, eventually becoming worn down by the tough, abrasive grasses and falling out. Like many Macropodiformes, early kangaroos had plagiaulacoids, but these converted into normal molars in more derived species.[3] Most species have four molars and, when the last pair is too worn to be of use, the animals starve to death.[4] The dental formula for macropods is 3.0–1.2.41.0.2.4.

Like the eutherian ruminants of the Northern Hemisphere (sheep, cattle, and so on), macropods have specialised digestive systems that use a high concentration of bacteria, protozoans, and fungi in the first chamber of a complex stomach to digest plant material. The details of organisation are quite different, but the result is somewhat similar.

The particular structure-function relationship of the Macropodidae gut and the gut microbiota allows the degradation of lignocellulosic material with a relatively low emission of methane relative to other ruminants. These low emissions are partly explained by the anatomical differences between the macropodid digestive system and that of ruminants, resulting in shorter retention times of particulate digesta within the foregut. This fact might prevent the establishment of methanogenic archaea, which has been found in low levels in tammar wallabies (Notamacropus eugenii) and eastern grey kangaroo (M. giganteus). Metagenomic analysis revealed that the foregut of tammar wallabies mainly contains bacteria belonging to the phyla Bacillota, Bacteroidota, and Pseudomonadota. Among Pseudomonadota populations of the Succinivibrionaceae family are overrepresented and may contribute to low methane emissions.[5]

Macropods vary in size considerably, but most have very large hind legs and long, powerfully muscled tails. The term macropod comes from the Greek for "large foot" and is appropriate: most have very long, narrow hind feet with a distinctive arrangement of toes. The fourth toe is very large and strong, the fifth toe moderately so; the second and third are fused; and the first toe is usually missing. Their short front legs have five separate digits. Some macropods have seven carpal bones instead of the usual eight in mammals.[6] All have relatively small heads and most have large ears, except for tree-kangaroos, which must move quickly between closely spaced branches. The young are born very small and the pouch opens forward.

The unusual development of the hind legs is optimised for economical long-distance travel at fairly high speed. The greatly elongated feet provide enormous leverage for the strong legs, but the famous kangaroo hop has more: kangaroos and wallabies have a unique ability to store elastic strain energy in their tendons. In consequence, most of the energy required for each hop is provided "free" by the spring action of the tendons (rather than by muscular effort). The main limitation on a macropod's ability to leap is not the strength of the muscles in the hindquarters, it is the ability of the joints and tendons to withstand the strain of hopping.
A female quokka with a joey

Furthermore, the act of hopping in kangaroos and wallabies is associated with their breathing process. The movement of their feet off the ground helps to expel air from their lungs, while bringing their feet forward for landing replenishes their lungs with air, resulting in greater energy efficiency. Studies conducted on these animals have shown that hopping at faster speeds requires only a minimal increase in effort beyond the energy required to hop in general, which is significantly less than what would be required in other animals like horses, dogs, or humans. Additionally, it has been observed that carrying extra weight requires little additional energy, which is particularly important for female kangaroos and wallabies carrying heavy pouch young.[citation needed]

The ability of larger macropods to survive on poor-quality, low-energy feed, and to travel long distances at high speed without great energy expenditure (to reach fresh food supplies or waterholes, and to escape predators) has been crucial to their evolutionary success on a continent that, because of poor soil fertility and low, unpredictable average rainfall, offers only very limited primary plant productivity.

Most macropod species have a polygynous mating system[7] and produce a mating plug after copulation.[8][9][10] Gestation in macropods lasts about a month, being slightly longer in the largest species. Typically, only a single young is born, weighing less than 1 g (0.035 oz) at birth. They soon attach themselves to one of four teats inside the mother's pouch. The young leave the pouch after five to 11 months, and are weaned after a further two to six months. Macropods reach sexual maturity at one to three years of age, depending on the species.[11]
Fossil record
Main article: Evolution of Macropodidae
Procoptodon goliah
Simosthenurus occidentalis
Sthenurus strilingi

The evolutionary ancestors of marsupials split from placental mammals during the Jurassic period about 160 million years ago (Mya).[12] The earliest known fossil macropod dates back about 11.61 to 28.4 Mya, either in the Miocene or Late Oligocene, and was uncovered in South Australia. Unfortunately, the fossil could not be identified any further than the family. A Queensland fossil of a species similar to Hadronomas has been dated at around 5.33 to 11.61 Mya, falling in the Late Miocene or Early Pliocene. The earliest completely identifiable fossils are from around 5.33 Mya.[13]
Classification
See also: List of macropodiformes
Tree-kangaroos have smaller ears for easier maneuvering between tree branches, and a much longer tail.
A red kangaroo showing pentapedal locomotion while grazing: the forelimbs and tail take the animal's weight while the hind legs are brought forward.
A pademelon has typical macropod legs, although they are obscured by fur in this image.
A pademelon eating a slice of sweet potato: Although usually grazing directly from the ground with their mouth, macropods may also use their front paws to assist in grazing.
A "forester kangaroo" hopping over a puddle

The listing for extant species is based on The Third edition of Wilson & Reeder's Mammal Species of the World (2005), except where the Mammal Diversity Database and IUCN agree on a change. The two living subfamilies in the family Macropodidae are the Lagostrophinae, represented by a single species, the banded hare-wallaby, and the remainder, which make up the subfamily Macropodinae (67 species).

Macropodidae[1][14]
Genus †Watutia
Genus †Dorcopsoides
Genus †Kurrabi
Subfamily Lagostrophinae[15]
Genus Lagostrophus
Banded hare-wallaby, Lagostrophus fasciatus
Genus †Protemnodon
Genus †Troposodon
Subfamily †Sthenurinae
Genus †Hadronomas
Tribe †Sthenurini
Genus †Sthenurus
Genus †Metasthenurus
Tribe †Simosthenurini
Genus †Archaeosimos
Genus †Simosthenurus
Genus †Procoptodon
Subfamily Macropodinae
Genus †Prionotemnus
Genus †Congruus
Genus †Baringa
Genus †Bohra
Genus †Synaptodon
Genus †Fissuridon
Genus †Silvaroo
Genus †Nombe
Genus Dendrolagus: tree-kangaroos
Grizzled tree-kangaroo, Dendrolagus inustus
Lumholtz's tree-kangaroo, Dendrolagus lumholtzi
Bennett's tree-kangaroo, Dendrolagus bennettianus
Ursine tree-kangaroo, Dendrolagus ursinus
Matschie's tree-kangaroo, Dendrolagus matschiei
Doria's tree-kangaroo, Dendrolagus dorianus
Goodfellow's tree-kangaroo, Dendrolagus goodfellowi
Lowlands tree-kangaroo, Dendrolagus spadix
Golden-mantled tree-kangaroo, Dendrolagus pulcherrimus
Seri's tree-kangaroo, Dendrolagus stellarum
Dingiso, Dendrolagus mbaiso
Tenkile, Dendrolagus scottae
Wondiwoi tree-kangaroo, Dendrolagus mayri
Ifola, Dendrolagus notatus
Genus Dorcopsis
Brown dorcopsis, Dorcopsis muelleri
White-striped dorcopsis, Dorcopsis hageni
Black dorcopsis, Dorcopsis atrata
Gray dorcopsis, Dorcopsis luctuosa
Genus Dorcopsulus
Small dorcopsis, Dorcopsulus vanheurni
Macleay's dorcopsis, Dorcopsulus macleayi
Genus Lagorchestes
†Lake Mackay hare-wallaby, Lagorchestes asomatus
Spectacled hare-wallaby, Lagorchestes conspicillatus
Rufous hare-wallaby, Lagorchestes hirsutus
†Eastern hare-wallaby, Lagorchestes leporides
Genus Macropus
Western grey kangaroo, Macropus fuliginosus
Eastern grey kangaroo, Macropus giganteus
Genus Notamacropus
Agile wallaby, Notamacropus agilis
Black-striped wallaby, Notamacropus dorsalis
Tammar wallaby, Notamacropus eugenii
Western brush wallaby, Notamacropus irma
Parma wallaby, Notamacropus parma
Pretty-faced wallaby, Notamacropus parryi
Red-necked wallaby, Notamacropus rufogriseus
†Toolache wallaby, Notamacropus greyi
Genus Onychogalea
Bridled nail-tail wallaby, Onychogalea fraenata
†Crescent nail-tail wallaby, Onychogalea lunata
Northern nail-tail wallaby, Onychogalea unguifera
Genus Osphranter
Antilopine kangaroo, Osphranter antilopinus
Black wallaroo, Osphranter bernardus
Common wallaroo, Osphranter robustus
Red kangaroo, Osphranter rufus
Genus Petrogale
P. brachyotis species-group
Short-eared rock-wallaby, Petrogale brachyotis
Monjon, Petrogale burbidgei
Nabarlek, Petrogale concinna
P. xanthopus species-group
Proserpine rock-wallaby, Petrogale persephone
Rothschild's rock-wallaby, Petrogale rothschildi
Yellow-footed rock-wallaby, Petrogale xanthopus
P. lateralis/penicillata species-group
Allied rock-wallaby, Petrogale assimilis
Cape York rock-wallaby, Petrogale coenensis
Godman's rock-wallaby, Petrogale godmani
Herbert's rock-wallaby, Petrogale herberti
Unadorned rock-wallaby, Petrogale inornata
Black-flanked rock-wallaby, Petrogale lateralis
Mareeba rock-wallaby, Petrogale mareeba
Brush-tailed rock-wallaby, Petrogale penicillata
Purple-necked rock-wallaby, Petrogale purpureicollis
Mount Claro rock-wallaby, Petrogale sharmani
Genus Setonix
Quokka or short-tailed scrub wallaby, Setonix brachyurus
Genus Thylogale
Tasmanian pademelon, Thylogale billardierii
Brown's pademelon, Thylogale browni
Dusky pademelon, Thylogale brunii
Calaby's pademelon, Thylogale calabyi
Mountain pademelon, Thylogale lanatus
Red-legged pademelon, Thylogale stigmatica
Red-necked pademelon, Thylogale thetis
Genus Wallabia
Swamp wallaby or black wallaby, W. bicolor

See also

flagAustralia portaliconAnimals portaliconMammals portal

Australian megafauna
Macropod hybrid

References

Groves, C. P. (2005). Wilson, D. E.; Reeder, D. M. (eds.). Mammal Species of the World: A Taxonomic and Geographic Reference (3rd ed.). Baltimore: Johns Hopkins University Press. pp. 58–70. ISBN 0-801-88221-4. OCLC 62265494.
Clode, D (2006). Continent of Curiosities: A Journey Through Australian Natural History. Melbourne: Cambridge University Press. pp. 25–8. ISBN 978-0-521-86620-0.
Gurovich, Y.; Beck, R. (2009). "The phylogenetic affinities of the enigmatic mammalian clade Gondwanatheria". Journal of Mammalian Evolution. 16 (1): 25–49. doi:10.1007/s10914-008-9097-3. S2CID 42799370.
Attenborough, D. 1979. Life on Earth. Boston, MA: Little, Brown and Company. 319 p.
Pope, PB (2011). "Isolation of Succinivibrionaceae implicated in low ethane emissions from Tammar Wallabies". Science. 333 (6042): 646–648. Bibcode:2011Sci...333..646P. doi:10.1126/science.1205760. PMID 21719642. S2CID 206534060.
Swamp Wallaby (Wallabia bicolor) carpals
Sigg, Dominique P., and Anne W. Goldizen. "Male reproductive tactics and female choice in the solitary, promiscuous bridled nailtail wallaby (Onychogalea fraenata)." Journal of Mammalogy 87.3 (2006): 461-469.
Vogelnest, Larry; Woods, Rupert (18 August 2008). Medicine of Australian Mammals. Csiro Publishing. ISBN 978-0-643-09797-1.
Staker, Lynda (30 June 2014). Macropod Husbandry, Healthcare and Medicinals--Volumes One and Two. Lynda Staker. ISBN 978-0-9775751-2-1.
Jackson, Stephen M. (2003). Australian Mammals: Biology and Captive Management. Csiro Publishing. ISBN 978-0-643-06635-9.
Poole, WE (1984). Macdonald, D (ed.). The Encyclopedia of Mammals. New York: Facts on File. pp. 862–71. ISBN 0-87196-871-1.
Luo, Z. X.; Yuan, C. X.; Meng, Q. J.; Ji, Q. (25 August 2011). "A Jurassic eutherian mammal and divergence of marsupials and placentals". Nature. 476 (7361): 442–445. Bibcode:2011Natur.476..442L. doi:10.1038/Nature10291. PMID 21866158. S2CID 205225806.
The Paleobiology Database (2011). "Macropodidae (kangaroo)". The Paleobiology Database. Majura Park, ACT, Australia: Australian Research Council. Retrieved 11 July 2011.
Haaramo, M (20 December 2004). "Macropodidae: kenguroos". Mikko's Phylogeny Archive. Archived from the original on 31 March 2007. Retrieved 15 March 2007.
Prideaux, GJ; Warburton, NM (2010). "An osteology-based appraisal of the phylogeny and evolution of kangaroos and wallabies (Macropodidae: Marsupialia)". Zoological Journal of the Linnean Society. 159 (4): 954–87. doi:10.1111/j.1096-3642.2009.00607.x.

Mammals, Fine Art Prints

Mammals Images

Biology Encyclopedia

Retrieved from "http://en.wikipedia.org/"
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World