Fine Art

Superregnum: Eukaryota
Cladus: Unikonta
Cladus: Opisthokonta
Cladus: Holozoa
Regnum: Animalia
Subregnum: Eumetazoa
Cladus: Bilateria
Cladus: Nephrozoa
Cladus: Protostomia
Cladus: Ecdysozoa
Cladus: Panarthropoda
Phylum: Arthropoda
Subphylum: Hexapoda
Classis: Insecta
Cladus: Dicondylia
Subclassis: Pterygota
Cladus: Metapterygota
Infraclassis: Neoptera
Cladus: Eumetabola
Cladus: Endopterygota
Superordo: Panorpida
Cladus: Amphiesmenoptera
Ordo: Lepidoptera
Subordo: Glossata
Cladus: Coelolepida
Cladus: Myoglossata
Cladus: Neolepidoptera
Infraordo: Heteroneura
Cladus: Eulepidoptera
Cladus: Ditrysia
Cladus: Apoditrysia
Cladus: Obtectomera
Superfamilia: Papilionoidea

Familia: Nymphalidae
Subfamilia: Heliconiinae
Tribus: Heliconiini
Genus: Heliconius
Species: H. antiochus – H. aoede – H. astraea – H. atthis – H. besckei – H. burneyi – H. charithonia – H. clysonymus – H. congener – H. cydno – H. demeter – H. doris – H. egeria – H. eleuchia – H. elevatus – H. erato – H. ethilla – H. godmani – H. hecale – H. hecalesia – H. hecuba – H. hermathena – H. heurippa – H. hierax – H. himera – H. hortense – H. insolitus – H. ismenius – H. lalitae – H. leucadia – H. longarena – H. luciana – H. melpomene – H. metharme – H. metis – H. nattereri – H. numata – H. pardalinus – H. peruvianus – H. ricini – H. sapho – H. sara – H. telesiphe – H. timareta – H. tristero – H. wallacei – H. xanthocles

Heliconius Kluk 1780

Type species: Papilio charithonia Linnaeus, 1767

Heliconius Linnaeus, 1758: 465. "Ghost name..." per Hemming, 1967: 210.
Heliconius Latreille, 1804
Migonitis Hübner, 1816 (preocc. Migonitis Rafinesque, 1815)
Sunias Hübner, 1816
Sicyonia Hübner, 1816
Ajantis Hübner, 1816
Apostraphia Hübner, 1816
Heliconia Latreille, 1818 (emend.)
Laparus Billberg, 1820
Type species: Papilio doris Linnaeus, 1771.
Crenis Hübner, 1821
Phlogris Hübner, [1825]
Podalirius Gistel, 1848 (preocc. Latreille, 1802, repl. name)
Blanchardia Buchecker, 1880 (preocc. Blanchardia Castelnau, 1875)
Neruda Turner, 1976
Type species: Nereis aoede Hübner, 1818. by original designation.


Attal, S, 1999. New Neotropical Nymphalidae (Lepidoptera, Rhopalocera). Bulletin de la Société entomologique de France 104(4): 369–374. Reference page.
Bálint, Zs., C.S. Guppy, N.G. Kondla; K. Johnson & Ch.J. Durden, 2001. Plebeius Kluk, 1780 or Plebejus Kluk, 1802? (Lepidoptera: Lycaenidae). Folia Entomologica Hungarica 62: 177-184. Reference page.
Brévignon, C. 1996. Description d'un nouvel Heliconius provenant de Guyane Française (Lepidoptera, Nymphalidae). Lambillionea 96(3): 467–470. Reference page.
Brower, A.V.Z. 2018. Alternative facts: a reconsideration of putatively natural interspecific hybrid specimens in the genus Heliconius (Lepidoptera: Nymphalidae). Zootaxa 4499(1): 1–87. DOI: 10.11646/zootaxa.4499.1.1 Open access pdf Reference page.
Brown, K.S. & H. Holzinger, 1973. The Heliconians of Brazil (Lepidoptera:Nymphalidae). Part IV. Systematics and biology of Eueides tales Cramer, with description of a new subspecies from Venezuela. Zeitschrift der Arbeitsgemeinschaft Österreichischen Entomologen 24: 44-65. Reference page.
Brown, K.S., 1973. The Heliconians of Brazil (Lepidoptera: Nymphalidae). Part V. Three new subspecies from the Mato Grosso and Rondonia. Bulletin of the Allyn Museum 13: 1–19. PDF. Reference page.
Brown Jr., K.S. & Benson, W.W. 1975. West Colombian biogeography. Notes on Heliconius hecalesia and H. sapho (Nymphalidae). Journal of the Lepidopterists' Society 29(4): 199–212. Full article (PDF).. Reference page.
Brown, K.S., 1975: The Heliconians of Brazil (Lepidoptera: Nymphalidae). Part VI. Aspects of the biology and ecology of Heliconius demeter with description of four new subspecies. Bulletin of the Allyn Museum 26: 1–19. Reference page.
Brown, K.S., 1975: Geographical patterns in Neotropical Lepidoptera. Systematics and derivation of known and new Heliconiini (Nymphalidae: Nymphalinae). Journal of Entomology. Series B, Taxonomy, 44 (3): 201–242. Reference page.
Brown, K.S., 1976. An illustrated key to the Silvaniform Heliconius (Lepidoptera: Nymphalidae) with description of new subspecies. Transactions of the American Entomological Society, 102 (3): 373-484. Reference page.
Brown, K.S. & Fernández Yépez, F. 1984.Los Heliconiini (Lepidoptera, Nymphalidae) de Venezuela. Boletín de Entomología Venezolana 3(4): 29-73. Reference page.
Comstock, W.P. & F. M. Brown, 1950: Geographical variation and subspeciation in Heliconius charitonius Linnaeus (Lepidoptera, Nymphalidae). American Museum Novitates 146: 1-21. Reference page.
Freitas, A.V.L., Ramos, R.R., Silva-Brandão, K.L., Coutouné, N., Magaldi, L.M., Pablos, J.L., Rosser, N. & Brown Jr., K.S. 2019c. A New Subspecies of Heliconius hermathena (Nymphalidae: Heliconiinae) from Southern Amazonia. Neotropical Entomology 48: 467–475. DOI: 10.1007/s13744-018-0658-8. Open access. Reference page.
Hemming, A. F., 1967. The generic names of the butterflies and their type species (Lepidoptera: Rhopalocera). Bulletin of the British Museum (Natural History) 1967, Suppl. 9: 1-509.Reference page.
Holzinger, H. & R. Holzinger, 1975. Heliconius demeter ucayalensis, eine neue Subspezies aus Peru (Lepidoptera: Nymphalidae). Zeitschrift der Arbeitsgemeinschaft Österreichischen Entomologen 26(1): 29–30. Reference page.
Kluk, K., (1780): Zwierzat historyi naturalney Poczatki i gospodarstwo, 4. – Warsaw, Xiezy Piiarów, [01] + 502 pp + 4 double plates. ZooBankReference page.
Kozak, K.M., Wahlberg, N., Neild, A.F.E., Dasmahapatra, K.K., Mallet, J., & Jiggins, C.D., 2015: Multilocus Species Trees Show the Recent Adaptive Radiation of the Mimetic Heliconius Butterflies. Systematic Biology 64(3): 505–524.
Lamas, G. 1976. Notes on Peruvian Butterflies (Lepidoptera). II. New Heliconius (Nymphalidae) from Cusco and Madre de Dios. Revista Peruana de Entomologia 19(1): 1–7. Full article (PDF). Reference page.
Lamas, G. 1997. Comentarios taxonómicos y nomenclaturales sobre ninfalidos neotropicales (Lepidoptera: Nymphalidae), con la descripción de ocho subespecies nuevas. Revista Peruana de Entomologia 40(1): 111–125. full article (PDF}. Reference page.
Lamas, G. 2004. (ed.) Checklist: Part 4A. Hesperioidea - Papilionoidea. In Heppner, J.B. (ed.) Atlas of Neotropical Lepidoptera. Vol.5A, Pt.4A. Assn. for Tropical Lepidoptera/Scientific Publishers, Gainesville. 439pp. Reference page.
Moreira, G.R.P. & C.G.C. Mielke, 2010. A new species of Neruda Turner, 1976 from northeast Brazil (Lepidoptera: Nymphalidae: Heliconiinae: Heliconiini). Nachrichten des Entomologische Verein Apollo 31(1/2): 85–91. Reference page.
Neukirchen, W.M. 1990. Ein neuer Heliconius aus Venezuela (Lepidoptea: Nymphalidae). Entomologische Zeitschrift 100(16): 310–312. Reference page.
Neukirchen, W.M. 1990. Eine neue subspecies von Heliconius demeter Staudinger aus Brasilien (Lepidoptea: Nymphalidae). Entomologische Zeitschrift 100(12): 230–232. Reference page.
Neukirchen, W.M., 1991: Polymorphie und Systematik von Heliconius longarena Hewitson (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 101: 33–44.
Neukirchen, W.M., 1991: Heliconius egeria mariasibyllae subsp. nov. von Pará, Brazil (Lepidoptera: Nymphalidae). Atalanta 22 (2/4): 87–92.
Neukirchen, W.M., 1992: Three new Heliconius from territory of Amazonas in Venezuela and remarks other forms (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 102 (18): 321–331.
Neukirchen, W.M., 1993: Heliconius (Neruda) aoede centurius n. subsp., eune neue unterart aus Franzözisch Guayana. (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 104 (18): 353–357.
Neukirchen, W.M., 1994: Heliconius sara williami n. subsp. von Trinidad (West Indies) (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 104 (8): 141–144.
Neukirchen, W.M., 1995: Vier neue unterarten von Heliconius burneyi (Hübner, 1816). (Lepidoptera: Nymphalidae). Atalanta 26 (1/2): 201–208.
Neukirchen, W.M., 1995: Heliconius demeter titan n. subsp., eine bemerkenswerte neue unterart aus Zentral Amazonien. (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 105 (3): 52–56.
Neukirchen, W.M., 1996: Two new subspecies of Heliconius leucadia Bates, 1862 (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 106 (7): 279–283.
Neukirchen, W.M., 1997: Two new subspecies from Brazil (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 107 (6): 217–222.
Neukirchen, W.M., 1997: Heliconius demeter neildi a new subspecies from East Ecuador (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 107 (9): 357–361.
Neukirchen, W.M., 1997: Two new Heliconiinae from Oriental Ecuador (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 107 (11): 482–487.
Neukirchen, W.M., 2000: Two new subspecies of Ecuadorian Heliconiinae (Lepidoptera: Nymphalidae). Entomologische Zeitschrift 110 (5): 141–143.
Orellana, A.M., 2006: A remarkable new subspecies of Heliconius Kluk from northeastern Venezuela (Lepidoptera: Nymphalidae). Revista Peruana de Entomologia 45: 71–74. Full article: [1].

Vernacular names
中文: 釉蛺蝶屬

Heliconius comprises a colorful and widespread genus of brush-footed butterflies commonly known as the longwings or heliconians. This genus is distributed throughout the tropical and subtropical regions of the New World, from South America as far north as the southern United States. The larvae of these butterflies eat passion flower vines (Passifloraceae). Adults exhibit bright wing color patterns which signal their distastefulness to potential predators.

Brought to the forefront of scientific attention by Victorian naturalists, these butterflies exhibit a striking diversity and mimicry, both amongst themselves and with species in other groups of butterflies and moths. The study of Heliconius and other groups of mimetic butterflies allowed the English naturalist Henry Walter Bates, following his return from Brazil in 1859, to lend support to Charles Darwin, who had found similar diversity amongst the Galápagos finches.

Model for evolutionary study

Heliconius butterflies have been a subject of many studies, due partly to their abundance and the relative ease of breeding them under laboratory conditions, but also because of the extensive mimicry that occurs in this group. From the nineteenth century to the present day, their study has helped scientists to understand how new species are formed and why nature is so diverse. In particular, the genus is suitable for the study of both Batesian mimicry and Müllerian mimicry.

Because of the type of plant material that Heliconius caterpillars favor and the resulting poisons they store in their tissues, the adult butterflies are usually unpalatable to predators.[1] This warning is announced, to the mutual benefit of both parties, by bright colors and contrasting wing patterns, a phenomenon known as aposematism. Heliconius butterflies are thus Müllerian mimics of one another, and are also involved in Müllerian mimicry with various species of Ithomiini, Danaini, Riodinidae (Ithomeis and Stalachtis) and Acraeini as well as pericopine arctiid moths. They are probably the models for various palatable Batesian mimics, including Papilio zagreus and various Phyciodina.

Heliconius butterflies such as Heliconius numata are famous practitioners of Müllerian mimicry, and benefit from mimicking other unpalatable species of butterfly in their local habitat, such as Melinaea. This type of mimicry typically results in convergent evolution, whereby many (sometimes unrelated) species become protected by similar patterns or coloration. This is a distinct strategy from the better-known Batesian mimicry. In Batesian mimics defensive coloration or patterns are a bluff, mimicking those of actually poisonous or foul-tasting species. In Müllerian mimicry all species of the set have honest warnings, but the similarity between members of a set allows a single encounter between a predator and one member of the set to deter that predator in all future encounters with all members of the set. In this way multiple, often unrelated species, effectively cooperate with one another to educate their mutual predators.[1]

Work glow worms has been done to understand the genetic changes responsible for the convergent evolution of wing patterns in comimetic species. Molecular work on two distantly related Heliconius comimics, Heliconius melpomene and Heliconius erato, has revealed that homologous genomic regions in the species are responsible for the convergence in wing patterns.[2][3][4] Also, Supple had found evidence of two co-mimics H. erato and H. melpomene having no shared single-nucleotide polymorphisms (SNPs), which would be indicative of introgression, and hypothesized the same regulatory genes for color/pattern had comparably changed in response to the same selective forces.[5] Similarly, molecular evidence indicates that Heliconius numata shares the same patterning homologues, but that these loci are locked into a wing patterning supergene that results in a lack of recombination and a finite set of wing pattern morphs.[6]

One puzzle with Müllerian mimicry/convergence is that it would be predicted the butterflies to all eventually converge on the same color and pattern for the highest predator education. Instead, Heliconius butterflies are greatly diverse and even form multiple 'mimicry rings' within the same geographical area. Additional evolutionary forces are likely at work.[7]

Heliconius butterflies are models for the study of speciation. Hybrid speciation has been hypothesized to occur in this genus and may contribute to the diverse mimicry found in Heliconius butterflies.[8] It has been proposed that two closely related species, H. cydno and H. melpomene, hybridized to create the species H. heurippa. In addition, the clade containing Heliconius erato radiated before Heliconius melpomene, establishing the wing pattern diversity found in both species of butterfly.[9] In a DNA sequencing comparison involving species H. m. aglope, H. timareta, and H. m. amaryllis, it was found that gene sequences around mimicry loci were more recently diverged in comparison with the rest of the genome, providing evidence for speciation by hybridization over speciation by ancestral polymorphism.[10]

Hybridization is correlated with introgression. Results from Supple and her team have shown SNP's being polymorphic mostly around hybrid zones of a genome, and they claimed this supported the mechanism of introgression over ancestral variation for genetic material exchange for certain species.[5] Selection factors can drive introgression to revolve around genes correlated with wing pattern and color.[11] Research has shown introgression centering on two known chromosomes that contain mimicry alleles.[12]

Assortive mating reproductively isolates H. heurippa from its parental species.[13] Melo did a study on the hybrid H. heurippa to determine its mating habits regarding preference between other hybrids and its parental species. The results showed H. heurippa chose to reproduce via backcrossing, while the parental species were highly unlikely to reproduce with the backcrosses. This is significant, because hybrids' mating behavior would relatively quickly isolate itself from its parental species, and eventually form a species itself, as defined by lack of gene flow. His team also hypothesized that along with a mixed inheritance of color and pattern, the hybrids also obtained a mixed preference for mates from their parental species genes. The H. heurippa likely had a genetic attraction for other hybrids, leading to its reproductive isolation and speciation.[14]

Although rare, Heliconius butterflies are an example of homoploid hybrid speciation, i.e. hybridization without changing the number of chromosomes.[15] Aposematism, using warning colors, has been noted to improve species diversification, which may also contribute to the wide range of Heliconius butterflies.[16]
Sexual selection of aposematic colors

For aposematism and mimicry to be successful in the butterflies, they must continually evolve their colours to warn predators of their unpalatability. Sexual selection is important in maintaining aposematism, as it helps to select for specific shades of colours rather than general colors. A research team used techniques to determine some the color qualities of a set of butterflies. They found that color was more vivid on the dorsal side of the butterflies than on the ventral. Also, in comparing the sexes, females appeared to have differing brightness in specific spots.[17] It is important to select for specific colors to avoid subtle shades in any of the species involved in the mimicry. Unsuccessful warning colors will reduce the efficiency of the aposematism. To select for specific colours, neural receptors in the butterflies' brains give a disproportionate recognition and selection to those shades.[18] To test the importance of these neural and visual cues in the butterflies, researchers conducted an experiment wherein they eliminated colours from butterflies' wings. When a colour was eliminated, the butterfly was less successful in attracting mates and therefore did not reproduce as much as its counterparts[19]
Mating and offspring

Heliconius has evolved two forms of mating. The main form is standard sexual reproduction. Some species of Heliconius, however, have converged evolutionarily in regard to pupal mating. One species to exhibit this behavior is Heliconius charithonia.[20] In this form of mating, the male Heliconius finds a female pupa and waits until a day before she is moulted to mate with her. With this type of mating there is no sexual selection present. H. erato has a unique mating ritual, in which males transfer anti-aphrodisiac pheromones to females after copulation so that no other males will approach the mated females. No other Lepidoptera exhibit this behavior.[21]

Heliconius female butterflies also disperse their eggs much more slowly than other species of butterflies. They obtain their nutrients for egg production through pollen in the adult stage rather than the larval stage. Due to nutrient collection in the adult rather than larval stage, adult females have a much longer life than other species, which allows them to better disperse their eggs for survival and speciation.[22] This form of egg production is helpful because larvae are much more vulnerable than adult stages, although they also utilize aposematism. Because many of the nutrients needed to produce eggs are obtained in the adult stage, the larval stage is much shorter and less susceptible to predation.[22]
Cyanic characteristics

In order to be unpalatable, the Heliconius butterflies use cyanic characteristics, meaning they produce substances that have a cyanide group attached to them, ultimately making them harmful. Research has found that the amino acids needed to make the cyanic compounds come from feeding on pollen.[23] Although feeding on pollen takes longer than nectar feeding, the aposematic characteristics help to warn predators away and give them more time for feeding.[22] While Heliconius larvae feed on Passifloraceae which also have cyanic characteristics, the larvae have evolved the ability to neutralize cyanic molecules to protect them from the negative effects of the plant.[24]
Tiger longwing (Heliconius hecale)
Numata longwing (Heliconius numata)
Heliconius hewitsoni
Sara longwing (Heliconius sara)
Doris longwing (Heliconius doris)

Most current researchers agree that there are some 39 Heliconius species. These are listed alphabetically here, according to Gerardo Lamas' (2004) checklist.[25] Note that the subspecific nomenclature is incomplete for many species (there are over 2000 published names associated with the genus, many of which are subjective synonyms or infrasubspecific names).[26][27][28]

Heliconius Kluk, 1802

Heliconius antiochus (Linnaeus, 1767) – Antiochus longwing
Heliconius aoede (Hübner, [1813]) – Aoede longwing
Heliconius astraea Staudinger, 1897
Heliconius atthis Doubleday, 1847 – Atthis longwing or false zebra longwing
Heliconius besckei Ménétriés, 1857
Heliconius burneyi (Hübner, 1816) – Burney's longwing
Heliconius charithonia (Linnaeus, 1767) – zebra longwing
Heliconius clysonymus Latreille, 1817 – Clysonymus longwing, montane longwing
Heliconius congener Weymer, 1890
Heliconius cydno (Doubleday, 1847) – cydno longwing
Heliconius demeter Staudinger, 1897 – Demeter longwing
Heliconius doris (Linnaeus, 1771) – Doris longwing or Doris
Heliconius egeria (Cramer, 1775)
Heliconius eleuchia Hewitson, 1853 – white-edged longwing or eleuchia longwing
Heliconius elevatus Nöldner, 1901
Heliconius erato (Linnaeus, 1764) – crimson-patched longwing, red postman
Heliconius eratosignis (Joicey & Talbot, 1925)[29]
Heliconius ethilla (Godart, 1819) – Ethilia longwing
Heliconius godmani Staudinger, 1882
Heliconius hecale (Fabricius, 1775) – tiger longwing or Hecale longwing
Heliconius hecalesia Hewitson, 1853 – five-spotted longwing
Heliconius hecuba (Hewitson, [1858]) – Hecuba longwing
Heliconius hermathena (Hewitson, 1853) – Hermathena longwing
Heliconius heurippa (Hewitson, 1853)
Heliconius hewitsoni Staudinger, 1875
Heliconius hierax Hewitson, 1869
Heliconius himera Hewitson, 1867
Heliconius hortense Guérin, [1844] – Mexican longwing or mountain longwing
Heliconius ismenius Latreille, [1817] – Ismenius tiger or tiger helconian
Heliconius lalitae Brévignon, 1996
Heliconius leucadia (Bates, 1862) – Leucadia longwing
Heliconius melpomene (Linnaeus, 1758) – (common) postman
Heliconius metharme (Erichson, [1849])
Heliconius metis (Moreira & Mielke, 2010)
Heliconius nattereri Felder, 1865 – Natterer's longwing
Heliconius numata (Cramer, 1780) – Numata longwing
Heliconius pachinus Salvin, 1871 – pachinus longwing
Heliconius pardalinus (Bates, 1862)
Heliconius peruvianus Felder – Peruvian longwing
Heliconius ricini (Linnaeus, 1758) – ricini longwing
Heliconius sapho (Drury, 1782) – Sapho longwing
Heliconius sara (Fabricius, 1793) – Sara longwing
Heliconius sergestus (Weymer, 1894)
Heliconius telesiphe Doubleday, 1847 – telesiphe longwing
Heliconius timareta (Hewitson, 1867)
Heliconius tristero Brower, 1996
Heliconius wallacei Reakirt, 1866 – Wallace's longwing
Heliconius xanthocles Bates, 1862


Wade, Nicholas (15 August 2011). "A Supergene Paints Wings for Surviving Biological War". NY Times. Retrieved 17 August 2011.
Baxter, S W; Papa, R; Chamberlain, N; Humphray, J S; Joron, M; Morrison, C; Ffrench-Constant, R H (2008). "Convergent evolution in the genetic basis of Müllerian mimicry in Heliconius butterflies". Genetics. 180 (3): 1567–77. doi:10.1534/genetics.107.082982. PMC 2581958. PMID 18791259.
Counterman, B A, Araujo-Perez, F, Hines, H M, Baxter, S W, Morrison, C M, Lindstrom, D P and Papa, R, 2010. Genomic hotspots for adaptation: The population genetics of Müllerian mimicry in Heliconius erato. PLOS Genetics 6:-.
Joron, M; Papa, R; Beltran, M; Chamberlain, N; Mavarez, J; Baxter, S; Abanto, M (2006). "A conserved supergene locus controls color pattern diversity in Heliconius butterflies". PLOS Biology. 4 (10): 1831–40. doi:10.1371/journal.pbio.0040303. PMC 1570757. PMID 17002517.
Supple, M., Hines, H., Dasmahapatra, K., Lewis J., Nielsen D., Lavoie, C., Ray, D., Salavar, C., Mcmillan, O., Counterman, B. 2103. Genomic architecture of adaptive color pattern divergence and convergence in Heliconius butterflies. Genome research (2013): gr-150615.
Joron, M; Frezal, L; Jones, R T; Chamberlain, N L (2011). ""et al." 2011. Chromosomal rearrangements maintain a polymorphic supergene controlling butterfly mimicry". Nature. 477 (7363): 203–08. doi:10.1038/nature10341. PMC 3717454. PMID 21841803.
Mallet, J. & Gilbert, L. (1994). "Why are there so many mimicry rings? Correlations between habitats, behaviour, and mimicry in Heliconius butterflies". Biological Journal of the Linnean Society (1995), 55: 159-180.
Brower A V Z (2011). "Hybrid speciation in Heliconius butterflies? A review and critique of the evidence". Genetica. 139 (2): 589–609. doi:10.1007/s10709-010-9530-4. PMC 3089819. PMID 21113790.
Brower, Andrew V. Z. (1994). "Rapid Morphological Radiation and Convergence Among Races of the Butterfly Heliconius erato Inferred from Patterns of Mitochondrial DNA Evolution". Proceedings of the National Academy of Sciences of the United States of America. 91 (14): 6491–6495. Bibcode:1994PNAS...91.6491B. doi:10.1073/pnas.91.14.6491. JSTOR 2364999. PMC 44228. PMID 8022810.
Joel Smith and Marcus R. Kronforst. "Do Heliconius Butterflies species exchange mimicry alleles?" Biology Letters. 2013 9, 20130503, published 17 July 2013.
Nadeau, N., Martin, S., Kozak, K., Salazar, C., Dasmahapatra, K., Davey, J., Baxter, S., Blaxter, M., Mallet, J., Jiggins C. 2012. Genome-wide patterns of divergence and gene flow across a butterfly radiation. Molecular Ecology (2013) 22, 814-826.
The Heliconius Genome Consortium. 2012. Butterfly genome reveals promiscuous exchange of mimicry adaptations among species. Nature (2012) vol. 487.
Mavarez, J; Salazar, C A; Bermingham, E; Salcedo, C; Jiggins, C D; Linares, M (2006). "Speciation by hybridization in Heliconius butterflies". Nature. 441 (7095): 868–71. Bibcode:2006Natur.441..868M. doi:10.1038/nature04738. PMID 16778888. S2CID 2457445.
Melo, M.; Salazar, C.; Jiggins, C.; Linares, M. (2008). "Assortative mating preferences among hybrids offer a route to hybrid speciation". Evolution. 63 (6): 1660–1665. doi:10.1111/j.1558-5646.2009.00633.x. PMID 19492995. S2CID 17250691.
Mavarez, J.; Salazar, C.A.; Bermingham, E.; Salcedo, C.; Jiggins, C.D.; Linares, M. (2006). "Speciation by hybridization in Heliconius butterflies". Nature. 441 (7095): 868–71. Bibcode:2006Natur.441..868M. doi:10.1038/nature04738. PMID 16778888. S2CID 2457445.
Prezeczek, K; Mueller, C.; Vamosi, S.M. (2008). "The evolution of the aposematism is accompanied by increased diversification". Integrative Zoology. 3 (3): 149–156. doi:10.1111/j.1749-4877.2008.00091.x. PMID 21396063.
Llaurens, V; Joron, M; Thery, M. (2014). "Cryptic differences in colour among Mullerian mimics: how can the visual capacities of predators and prey shape the evolution of wingcolours?". J. Evol. Biol. 27 (3): 531–540. doi:10.1111/jeb.12317. PMID 24444083. S2CID 19055696.
Vane-Wright R.I, P.R. Ackery eds. (1984). The Biology of Butterflies. Symposium of the Royal Entomological Society of London. Number 11. Academic Press, London, U.K.
Mavarez, J; Salazar, C; Bermingham, E; Salcedo, C; Jiggins, C; Linares, M (2006). "Speciation by hybridization in the Heliconius butterflies". Nature. 441 (7095): 868–871. Bibcode:2006Natur.441..868M. doi:10.1038/nature04738. PMID 16778888. S2CID 2457445.
Sourakov, Andrei (2008). "Pupal Mating in Zebra Longwing (Heliconius charithonia): Photographic Evidence". News of the Lepidopterists' Society. 50 (1): 26–32.
Gilbert, Lawrence E. (1976). "Postmating Female Odor in Heliconius Butterflies: A Male-Contributed Antiaphrodisiac?". Science. 193 (4251): 419–420. Bibcode:1976Sci...193..419G. doi:10.1126/science.935877. JSTOR 1742803. PMID 935877.
Gilbert, L.E. (1972). "Feeding and Reproductive Biology of Heliconius Butterflies". Proc. Natl. Acad. Sci. 69 (6): 1403–1407. doi:10.1073/pnas.69.6.1403. PMC 426712. PMID 16591992.
Nahrstedt A, R.H. Davis. 1980. The occurrence of the cyanoglucosides linamarin and lotaustralin, in Acraea and Heliconius butterflies. Comp. Biochem. Physiol.68B:575-577.
Price P.W., T.M. Lewinsohn, G.W. Fernandes, W.W. Benson eds. 1991. Plant- Animal Interactions: Evolutionary Ecology in Tropical and Temperate Regions. John Wiley and Sons, Inc, New. York, United States.
Lamas, G (Ed), 2004. Atlas of Neotropical Lepidoptera. Checklist: Part 4A Hesperioidea – Papiionoidea. Gainesville, Scientific Publishers/Association of Tropical Lepidoptera.
Heliconiini Archived 2010-07-11 at the Wayback Machine, Nymphalidae Study Group website
Heliconius at Markku Savela's Lepidoptera and Some Other Life Forms
Heliconius, Neotropical Butterflies

Rosser, Neil; Freitas, André V. L.; Huertas, Blanca; Joron, Mathieu; Lamas, Gerardo; Mérot, Claire; Simpson, Fraser; Willmott, Keith R.; Mallet, James; Dasmahapatra, Kanchon K. (2019). "Cryptic speciation associated with geographic and ecological divergence in two Amazonian Heliconius butterflies". Zoological Journal of the Linnean Society. 186 (1): 233–249. doi:10.1093/zoolinnean/zly046.

Further reading
Holzinger, H. and Holzinger, R, 1994. Heliconius and related genera. Sciences Nat, Venette, pp. 1–328, pl. 1–51 [1]
Kapan, D D (2001). "Three-butterfly system provides a field test of Müllerian mimicry". Nature. 409 (6818): 338–40. Bibcode:2001Natur.409..338K. doi:10.1038/35053066. PMID 11201741. S2CID 4414609.
Kronforst, M R; Young, L G; Blume, L M; Gilbert, L E (2006). "Multilocus analyses of admixture and introgression among hybridizing Heliconius butterflies". Evolution. 60 (6): 1254–68. doi:10.1111/j.0014-3820.2006.tb01203.x. PMID 16892975. S2CID 17899934.
Mallet, J; Beltrán, M; Neukirchen, W; Linares, M (2007). "Natural hybridization in heliconiine butterflies: The species boundary as a continuum". BMC Evol Biol. 7: 28. doi:10.1186/1471-2148-7-28. PMC 1821009. PMID 17319954.

Insects, Fine Art Prints

Insects Images

Biology Encyclopedia

Retrieved from ""
All text is available under the terms of the GNU Free Documentation License

Home - Hellenica World